
API Reference Guide

for EMEA

Rev.D
M00008903

Rev.D iii

TM-S1000 API for EMEA Reference Guide

Cautions
❏ No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
Seiko Epson Corporation.

❏ The contents of this document are subject to change without notice. Please contact us for the latest information.

❏ While every precaution has taken in the preparation of this document, Seiko Epson Corporation assumes no
responsibility for errors or omissions.

❏ Neither is any liability assumed for damages resulting from the use of the information contained herein.

❏ Neither Seiko Epson Corporation nor its affiliates shall be liable to the purchaser of this product or third parties
for damages, losses, costs, or expenses incurred by the purchaser or third parties as a result of: accident, misuse, or
abuse of this product or unauthorized modifications, repairs, or alterations to this product, or (excluding the U.S.)
failure to strictly comply with Seiko Epson Corporation's operating and maintenance instructions.

❏ Seiko Epson Corporation shall not be liable against any damages or problems arising from the use of any options
or any consumable products other than those designated as Original EPSON Products or EPSON Approved
Products by Seiko Epson Corporation.

 ©Seiko Epson Corporation, 2007-2012.

Trademarks
EPSON is a registered trademarks of Seiko Epson Corporation in Japan and other countries/regions.

EPSON TM-S1000 Driver is based in part on the work of the Independent JPEG Group.

libtiff

Copyright (c) 1988-1997 Sam Leffler
Copyright (c) 1991-1997 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is
hereby granted without fee, provided that (i) the above copyright notices and this permission notice appear in all
copies of the software and related documentation, and (ii) the names of Sam Leffler and Silicon Graphics may
not be used in any advertising or publicity relating to the software without the specific, prior written permission
of Sam Leffler and Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED
OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Celeron®and Pentium® are registered trademarks of Intel Corporation.

MS-DOS®, Microsoft ®, Win32®, Windows®, Windows NT®, Windows Vista®, Windows Server®, Visual Studio®,
Visual Basic®, Visual C++ ® and Visual C# ® are trademarks or registered trademarks of Microsoft Corporation in the
US or other countries.

InstallShield® is trademarks or registered trademarks of Macrovision Corporation in the US or other countries.

PC/AT® is trademarks of International Business Machines Corporation in the United States.

General Notice: Other product and company names used herein are for identification purposes only and may be
trademarks of their respective companies.

iv Rev.D

Contents

Contents . iv

Chapter 1 TM-S1000 Driver Overview

Introduction .1-1
Contents .1-1

Functions of theTM-S1000 .1-2
Model .1-3
Structure of TM-S1000 .1-3

Features of the TM-S1000 API .1-4
Operating Environment .1-6

OS .1-6
Computer .1-6
Interface .1-6
Development Language .1-7

Files Provided by the TM-S1000 API .1-8
Roles of Driver .1-8

Chapter 2 Install and Uninstall

Install and Uninstall .2-1
 Install .2-1
Uninstall .2-4

Silent Install .2-5
Generation of installation log file .2-6
Installer settings .2-6

Chapter 3 Programming guide

Application Processing Steps .3-1
MF_PROCESS structure .3-9
MF_IQA structure .3-10
MF_BARCODE structure .3-11
Error detections and operation priorities .3-12
API used for each processing mode and its setting .3-14

Sample Programs .3-18
Step 1 Opening/Closing the Device .3-19
Step 2 Displaying the Read Data .3-24
Step 3 Continuous Reading/Electric Endorsement .3-28
Step 4 Setting the Process When a Reading Error Occurs .3-35
Step 5 Setting MICR Font/Image Quality .3-40
Step 6 Reading OCR-A/B Font and Buzzer Setting .3-44
Step 7 Confirming the Device status and error handling .3-51
Step 8 Decoding a barcode, confirming the IQA and Waterfall process .3-61

How to Use the Scanner Advanced Functions .3-72
When not using the scanner advanced functions .3-72
Using the scanner advanced functions .3-72
Editing scanned-in images .3-73
Cropping .3-74

Chapter 4 Reference

Device information .4-1
Device Status .4-1
Maintenance Counter .4-3
Type ID .4-3
Device ID .4-4
Offline Code (BiGetOfflineCode) .4-6
Offline Code (BiGetOfflineCodeByIndex) .4-8
MICR Status .4-10

Rev.D v

TM-S1000 API for EMEA Reference Guide

TM-S1000 API Error Handling . 4-11
BiOpenMonPrinter . 4-14
BiSetMonInterval . 4-15
BiGetStatus . 4-16
BiSetStatusBackFunction . 4-17
BiSetStatusBackFunctionEx . 4-18
BiSetStatusBackWnd . 4-19
BiCancelStatusBack . 4-20
BiResetPrinter . 4-21
BiGetCounter . 4-22
BiResetCounter . 4-23
BiCancelError . 4-24
BiGetType . 4-25
BiGetOfflineCode . 4-26
BiGetOfflineCodeByIndex . 4-27
BiMICRSelectDataHandling . 4-28
BiMICRGetStatus . 4-30
BiMICRCleaning . 4-31
BiSCNSetImageQuality . 4-32
BiSCNSetImageFormat . 4-34
BiSCNSetScanArea . 4-36
BiSCNGetImageQuality . 4-38
BiSCNGetImageFormat . 4-40
BiSCNGetScanArea . 4-41
BiSCNSetCroppingArea . 4-42
BiSCNGetCroppingArea . 4-44
BiSCNDeleteCroppingArea . 4-45
BiSCNSelectScanUnit . 4-46
BiSCNMICRFunction . 4-47
BiSCNMICRCancelFunction . 4-53
BiSCNSelectScanFace . 4-54
BiGetPrnCapability . 4-55
BiCloseMonPrinter . 4-56
BiGetRealStatus . 4-57
BiSCNMICRFunctionContinuously . 4-58
BiSCNMICRFunctionPostPrint . 4-71
BiSCNMICRSetStatusBackFunction . 4-73
BiSCNMICRSetStatusBackWnd . 4-74
BiSCNMICRCancelStatusBack . 4-75
BiSetNumberOfDocuments . 4-76
BiGetMicrText . 4-77
BiMICRClearSpaces . 4-79
BiSetOcrABAreaOrigin . 4-80
BiGetOcrABText . 4-82
BiGetScanImage . 4-84
BiGetBarcodeData . 4-86
BiDecodeBarcode . 4-88
BiDecodeBarcodeMemory . 4-89
BiGetTransactionNumber . 4-90
BiSetTransactionNumber . 4-91
BiGetPrintStation . 4-93
BiSetPrintStation . 4-94
BiPrintText . 4-95
BiPrintImage . 4-97
BiPrintMemoryImage . 4-98
BiGetPrintSize . 4-99
BiSetPrintSize . 4-100
BiGetPrintPosition . 4-101
BiSetPrintPosition . 4-102
BiSetEndorseDirection . 4-103

vi Rev.D

BiUpdateEndorseText . 4-104
BiBufferedPrint . 4-105
BiSetTransactionNumberWithIncremental . 4-106
BiSetBehaviorToScnResult . 4-108
BiSetPaperThickness . 4-109
BiRingBuzzer . 4-110
BiSetWaterfallMode . 4-111
BiGetIQAResult . 4-113
BiGetVersion . 4-114
BiESCNEnable . 4-116
BiESCNGetAutoSize . 4-117
BiESCNSetAutoSize . 4-118
BiESCNGetCutSize . 4-119
BiESCNSetCutSize . 4-120
BiESCNGetRotate . 4-121
BiESCNSetRotate . 4-122
BiESCNGetDeSkew . 4-123
BiESCNSetDeSkew . 4-124
BiESCNGetDocumentSize . 4-125
BiESCNSetDocumentSize . 4-126
BiESCNDefineCropArea . 4-127
BiESCNGetMaxCropAreas . 4-129
BiESCNStoreImage . 4-130
BiESCNRetrieveImage . 4-133
BiESCNClearImage . 4-135
BiESCNGetRemainingImages . 4-137
Structures . 4-138

MF_BASE01 . 4-138
MF_MICR . 4-142
MF_SCAN . 4-146
MF_PRINT01 . 4-149
MF_PROCESS . 4-152
MF_OCR_AB . 4-162
MF_OCR_RELIABILITY . 4-164
MF_OCR_RELIABLE_INFO . 4-164
MF_IQA . 4-165
MF_IQA_RESULT . 4-172
MF_BARCODE . 4-176

Chapter 5 Differences Between TM-J9000/J9100 API and TM-S1000 API

API Lists of the TM-J9000/J9100 and the TM-S1000 . 5-1
Compatibility Between the TM-J9000/J9100 and the TM-S1000 . 5-1
API Compatibility of the Scanner Extended Functions . 5-6
Setting List of MF_PROCESS Structure . 5-6
Setting List of MF_IQA Structure . 5-7
Setting List of MF_BARCODE Structure . 5-9

Chapter 6 Log Collection Function

Creating A Log File . 6-2
How to Create A Log File . 6-2
How to Quit Creating A Log File . 6-3

How to Analyze A Log File . 6-5

Rev.D TM-S1000 Driver Overview 1-1

TM-S1000 API for EMEA Reference Guide

Chapter 1
TM-S1000 Driver Overview

Introduction

This chapter describes the necessary information when you develop applications using the
TM-S1000 API. Basic operations such as magnetic character reading or scanning on sample
programs attached to the API and how to program error handling when a paper jam or double
feeding occurs are also described.

Contents

❏ Chapter1 TM-S1000 Driver Overview
Describes the TM-S1000 functions, API features and development
environment.

❏ Chapter2 Installation and Uninstallation
Describes the installation and uninstallation of the TM-S1000 API and how
to install the API automatically with an application installer.

❏ Chapter3 Programming Guide
Describes how to develop applications with sample programs attached to
the TM-S1000 API. Sample programs for 8 functional levels are provided
enabling you to develop applications easily.

❏ Chapter4 Reference
Describes API reference. It also describes information of the maintenance
counter and differences between the WIN32 and .NET environment.

❏ Chapter5 Using TM-J9000/J9100 applications
Describes the differences between the APIs for the TM-J9000/J9100 and
the TM-S1000 and how to modify applications for the TM-J9000/J9100 to
let the application operate the TM-S1000.

❏ Chapter6 Log file
Describes how to create a log file and how to analyze it. The log files are
helpful for the efficient application development and analysis of errors.

1-2 TM-S1000 Driver Overview Rev.D

Functions of theTM-S1000

The TM-S1000 is a compact image scanner that continuously processes checks or documents.
You can realize the following functions by using the scanner with the TM-S1000 API.

❏ Reading magnetic characters on a check (E13B, CMC7)

❏ Scanning both sides of a document (black and white/256 grayscale).

❏ Saving a scanned image in a specified resolution and format
(Black and White : TIFF *, BMP / Grayscale : TIFF, JPEG, BMP, Raster).

❏ Reading OCR A/B fonts

❏ Decoding a barcode data from scanned image data

❏ Adding a processing record to front or back image data (Electric endorsement).

❏ Franking on a processed document

❏ Detecting/Notifying a document double-feeding and paper jams

❏ Performing IQA(Image Quality Assurance) analysis of image data. IQA conforms to the
recommendations of FSTC (Financial Services Technology Consortium).

❏ Sorting documents into 2 pockets depending on the reading result.

❏ Notifying in advance that a pocket will be full with the pocket near full sensor.

❏ Selecting a process mode.

• Reading during continuous paper feeding.

• Feeding a paper after reading it.

• Processing consecutively for both main and sub pockets (Waterfall function).

❏ Obtaining information from the maintenance counter (operation times of each mechanism)

❏ Notification of each operation by the embedded buzzer

* Image file that conforms to the ANSI X9.100-181-2007 standard must be saved as black and white, TIFF format, CCITT(Goup
4) compressed, resolution of 200 dpi.

Rev.D TM-S1000 Driver Overview 1-3

TM-S1000 API for EMEA Reference Guide

Model

❏ 30 dpm model

❏ 60 dpm model

❏ 90 dpm model

Note:
Waterfall function and BiSetNumberOfDocument is not available for the 30 dpm/60 dpm model with
a firmware version of 1.03 or earlier.

Structure of TM-S1000

The main functions of the TM-S1000 are arranged as shown in the figure below. All the functions
within the flow from loading to ejecting documents are shown.

Franking unit
Front

Ejected to the

Ejected to the

Paper
loading

MICR reading
Front

Scanner
Back

Scanner
Front

Paper path

1-4 TM-S1000 Driver Overview Rev.D

Features of the TM-S1000 API

❏ Applications for the TM-J9000/J9100 can be used with a minimum of modification.

• Reimplement modifications referring to Chapter 5.

• Printing and Photo ID functions of the TM-J9000/J9100 are not available for the
TM-S1000, which is a device for image scanning only.

❏ Silent installation
Building the API in an application installer enables the API to be installed automatically
when you install the application.

❏ Log function
Log files of API used by applications are helpful for troubleshooting.

The figure below shows the flow of document reading, data processing, and functions.
Specifying on an application can obtain various results.

* When one pocket becomes full in the Waterfall mode, documents are ejected to another pocket.

TM-S1000

Check Paper

Scan Front

Scan Back

RAW data

RAW data

MICR
Waveform data

PRESENTED

PRESENTED

PRESENTED

TM-S1000 API

Electric
endorsement
data

With Electric
endorsement
Back image file

Void

OCR data

Void

MICR data

Prepared in advance

Specified by application

Result

Void

"ABCD1234" "01234567"

OCR processing

Franking
Cartridge

Franking

Buzzer

Sorting into
Main/Sub
pocket * Main pocket

Sub pocket
Status

Status

Status

Waveform data

Waveform processingArea/Position
Black and White / Grayscale

Resolution
File format

Folder

Image processing

Front RAW data Back RAW data

Front image
file

Application

Back image

IQA

Electric endorsement added
Back side or Front side Void

IQA ResultBarcode data

Barcode decode

Front image

Rev.D TM-S1000 Driver Overview 1-5

TM-S1000 API for EMEA Reference Guide

TM-S1000 API allows you to make settings for the following TM-S1000 functions.

Functions
Side

Specify/Prepare Result
Front Back

Scanner reading ✔ ✔ Reading area; resolution;
Image quality; IQAvalidation; file
name;
folder name; file format

Image file

MICR reading ✔ - Reading font MICR text data

OCR reading ✔ - Reading area; reading ON/OFF OCR text data in a specified area

Barcode decode ✔ ✔ Specify conditions of decode Barcode data

Electric
endorsement added

✔ ✔ Data added ON/OFF;
Prepare endorsement data;
Rotation angle of endorsement
data

Front/Back image data with
endorsement data.

Franking ✔ - Franking ON/OFF;
Prepare a franking cartridge

Franking on the front of documents

Document sorting - Specify conditions of sorting Sorting into the main/sub pocket.

Buzzer - Specify conditions of buzzer The buzzer sounds /does not sound

Process mode - Specify continuous/individual/
Waterfall

Operating in the specified process
mode.

1-6 TM-S1000 Driver Overview Rev.D

Operating Environment

OS

❏ Microsoft Windows 8 (32/64 bit)

❏ Microsoft Windows 7 SP1 (32/64 bit)

❏ Microsoft Windows Vista SP2 (32/64 bit)

❏ Microsoft Windows XP SP3 (32 bit)

❏ Microsoft Windows 2000 SP4

❏ Microsoft Windows Server 2012

❏ Microsoft Windows Server 2008 R2 SP1

❏ Microsoft Windows Server 2008 SP2 (32/64 bit)

Computer

30 dpm model/ 60 dpm model

CPU: Pentium 4 1.2 GHz or more

Memory: 256 MB or more than the minimum system requirements of the OS

60 dpm model (when using IQA or Barcode)/ 90 dpm model

CPU: Pentium 4 2.0 GHz or more

Memory: 512 MB or more

Interface

USB2.0

Rev.D TM-S1000 Driver Overview 1-7

TM-S1000 API for EMEA Reference Guide

Development Language

 For development information on .NET, refer to “TM-S1000 .NET API Reference Guide”.

Sample programs for 8 levels for each development language are attached to the TM-S1000 API.
They make it easy to develop applications.

Development Tool Development Language

Visual Studio 6.0
Visual Basic 6.0

Visual C++ 6.0

Visual Studio .NET 2003

Visual Basic .NET 2003

Visual C++ .NET 2003

Visual C# .NET 2003

Visual Studio 2005

Visual Basic 2005

Visual C++ 2005

Visual C# 2005

Visual Studio 2008

Visual Basic 2008

Visual C++ 2008

Visual C# 2008

Visual Studio 2010

Visual Basic 2010

Visual C++ 2010

Visual C# 2010

1-8 TM-S1000 Driver Overview Rev.D

Files Provided by the TM-S1000 API

When you install the TM-S1000 API, the files are copied into the following folder by default.

Note
For 64-bit OS, "Program Files(x86)" corresponds to the above "Program Files" folder.

Roles of Driver

An application controls the TM-S1000 with the API and drivers. The roles are shown below.

C:/Program Files

EPSON
BankDriver

bin

TMUSB

(DLL necessary for the TM-S1000)

(USB port driver)

Header file(EpsStmApiInterface.h/MultiFunction.h) included in the sample program.

TM-S1000

Application

EPSON TM-S1000

USB Host Controller Driver

TM-S1000 Driver

TMUSB Device Driver

USB Bus Driver

USB Controller

Windows

Provided by EPSON

Rev.D Install and Uninstall 2-1

TM-S1000 API for EMEA Reference Guide

Chapter 2
Install and Uninstall

This chapter explains the installation and uninstallation of the TM-S1000 driver. Also explained
is the “Silent installation” of the TM-S1000 driver that occurs automatically when the application
is installed. Note that installing the TM-S1000 drivers also causes the TM-S1000 API and USB
device drivers (TMUSB) to be installed.

Install and Uninstall

This section explains how to install and uninstall the TM-S1000 API.

Note
When updating TM-S1000 driver, install the new driver without uninstalling the existing old
driver. The old driver is automatically uninstalled. You also do not need to uninstall the existing
driver even when downgrading the driver.

If using .NET application, it is necessary for the .NET Framework to be installed before installing
the EPSON TM-S1000 Driver. See the Microsoft website for information concerning the .NET
Framework.

 Install

The following procedure is used to install the TM-S1000 API.

1. Before installing the driver, check that the TM-S1000 is not connected to the computer.

2. Execute setup.exe for the EPSON TM-S1000 driver.
When installing the TM-S1000 API under Windows Vista or newer Windows versions,
executing setup.exe for the EPSON TM-S1000 driver will cause the User Account Control
screen to appear. Note also that the operation varies between those users with
Administrator authority and those without.

Users with Administrator authority : Click [Allow]. The installation screen will
appear.

Users without Administrator authority : Input the password of a user with
Administrator authority, and then click [OK].
The installation screen will appear.

Note
Do not attempt to execute setup.exe for the EPSON TM-S1000 driver while the TM-S1000 API
is being installed.

2-2 Install and Uninstall Rev.D

3. Click [Next].

4. The SOFTWARE LICENSE AGREEMENT screen will appear. Select “I accept the terms of
the license agreement” and then click [Next].

5. Specify the location where the TM-S1000 API is to be installed, and then click the [Next]
button. (The default installation location is C:\Program Files\EPSON\BankDriver.)

Note
For 64-bit OS, "Program Files(x86)" corresponds to the above "Program Files" folder.

Rev.D Install and Uninstall 2-3

TM-S1000 API for EMEA Reference Guide

6. The Current Settings screen appears. Click [Next]. The TM-S1000 API is installed.

7. The Maintenance Complete screen appears. Click [Finish]. This completes the installation of
the TM-S1000 API.

8. Connect the TM-S1000 to your computer and then apply the power.

2-4 Install and Uninstall Rev.D

Uninstall

The following procedure is used to uninstall the TM-S1000 API.

1. Execute setup.exe for the EPSON TM-S1000 driver.

2. Select [Remove] and then click [Next].

3. The Uninstall Confirmation screen appears. Click [Yes].

4. The Uninstall Complete screen appears. Click [Finish]. This completes the uninstallation of
the TM-S1000 API.

Subsequently, the TM-S1000 API cannot be used. If you subsequently wish to use the TM-
S1000 API, it must be reinstalled.

Rev.D Install and Uninstall 2-5

TM-S1000 API for EMEA Reference Guide

Silent Install

“Silent Install” refers to the automatic installation of the TM-S1000 driver when the user installs
an application.
This is done by executing a command and incorporating setup.exe of the EPSON TM-S1000
Driver and the log file recorded during the TM-S1000 driver installation procedure into the
installer of the application.

Note
When performing the silent install on a client computer, you must have logged on to the computer
as an Administrator. The installation cannot be made if you have logged on as a user.

Installer settings

(Making settings in the application installer)

Generation of installation log file

(Generated by the developer in the development environment)

“Silent Install”

(Executed automatically when the application is installed)

2-6 Install and Uninstall Rev.D

Generation of installation log file

To create an installation log file, perform installation by executing setup.exe for the TM-S1000
driver from the command prompt.

Note
Create the installation log file using a development environment on a computer on which the TM-
S1000 API has not been installed.
Before creating the installation log file, first create the TM-S1000 API installation folder
appropriate for the application.

Create the log file using the following procedure.

1. Click [Start] [All Programs] [Accessories] and then select “Command Prompt”

2. Input the full path to setup.exe, together with the command for creating the installation log
file (/r),
and then press the Enter key.

> [setup.exe (specified with the full path)] [/r]

3. The setup screen appears, and installation is performed in the usual way ("Install" on
page 2-1). Specify the installation location.

4. Upon the completion of installation, the "setup.iss" log file will have been created in
“C:\WINDOWS\”.

Installer settings

By executing the following commands from the application installer, the TM-S1000 driver can be
installed automatically.

>[setup.exe (specified with the full path)] [/s /f1 “setup.iss (specified with the full path)”]

Ex: D:\TM-S1000>setup.exe /s /f1"D:\TM-S1000\setup.iss"

Setting non-display in [Add or Remove Programs]

When the EPSON TM-S1000 driver is installed by means of silent install, “TM-S1000 Driver
Version x.xx” will appear in [Add or Remove Programs] ([Uninstall a Program] in Windows
Vista or newer Windows versions.), in the same way as when it is installed normally. If you
want to prevent it from appearing in [Add or Remove Programs], execute the installer with the
following command. (Setting non-display can prevent the user from accidentally deleting the
driver.)

>[setup.exe (specified with the full path)] [/s /f1”setup.iss(specified with the full path)”]
 [/z”/Invisible”]

Ex: D:\TM-S1000>setup.exe /s /f1”D:\TM-S1000\setup.iss” /z”/Invisible”

Rev.D Install and Uninstall 2-7

TM-S1000 API for EMEA Reference Guide

Uninstalling the driver forcibly

To uninstall the EPSON TM-S1000 Driver forcibly, add the following command to the installer.

>[setup.exe (specified with the full path)] [/z"uninstall"]

Ex: D:\TM-S1000>setup.exe /z"uninstall"

Comfirming the result of the Silent Install

After finishing the silent install, a log file (Setup.log) is created. You can confirm the result in the
[ResponseResult] section in the “Setup.log” file. The log file is created in the following directory.

❏ Same directory as the installation log file

❏ Arbitrary directory
By executing the following command from the application installer, a log file with a
specified file name is created in a specified output directory.

[setup.exe (specified with the full path)] [/s /f1"setup.iss(specified with the full path)"]
[/f2”/output directory and file name”]

Ex: D:\TM-S1000>setup.exe /s /f1"D:\TM-S1000\setup.iss"
 /f2"D:\TM-S1000\Result\Result.log"

The following table shows the result codes and the descriptions.

Result Code Description

0 SUCCESS

-3 Specified data is not found in the installation log file (.iss).

-5 The installation log file (.iss) does not exist.

-8 The path for the installation log file (.iss) is not correct.

2-8 Install and Uninstall Rev.D

Rev.D Programming guide 3-1

TM-S1000 API for EMEA Reference Guide

Chapter 3
Programming guide

This chapter describes how to program using the TM-S1000 API.

Application Processing Steps

This section describes basic processing steps of applications using the TM-S1000 API.

3. Registering the CALLBACK function for reading process

5. Setting the structure

6. Registering the electric endorsement data (fixed data)

2. Opening the device

8. Normal completion of reading procress

9. Paper jam

7. Reading process

CALLBACK process

4. Registering the CALLBACK function for Device status

Step required

Step required if necessary

1. Enabling the scanner advanced functions

3-2 Programming guide Rev.D

Each step operates as follows.

1. Enabling the scanner advanced functions

The scanner advanced functions allow you to edit scanned-in images as follows.
If none of the following operations is required, you do not need to use the advanced functions
since scanned-in images are automatically processed. (the default automatic process crops out
unnecessary part of the scanned-in image and rotates the image 90 degrees)

❏ Editing scanned-in images using customer’s application

❏ Cropping specified area of the scanned-in image and saving the cropped image

See "How to Use the Scanner Advanced Functions" on page 3-72.

2. Opening the device

Search the connected TM-S1000 to obtain a handle. (See "Step 1-1. Process before use of the
device" on page 3-20.)

3,4. Registering the CALLBACK function

There are two kinds of the CALLBACK function available for the TM-S1000 API.

❏ CALLBACK for reading process

This CALLBACK function is called at the start/end of reading process, start/end of paper
feeding process, start/end of data reception and a paper jam error.
Set the CALLBACK function for reading process with BiSCNMICRSetStatusBackFunction.
If the development environment is VB, set it with BiSCNMICRSetStatusBackWnd. (See "Step
1-1. Process before use of the device" on page 3-20.)

❏ CALLBACK for Device status

This CALLBACK function is called when the sensor status of the TM-S1000 changes or a
paper jam error occurs. (See "Step 7-1. Process before use of the device" on page 3-52 ,
"Device Status" on page 4-1.)

Rev.D Programming guide 3-3

TM-S1000 API for EMEA Reference Guide

5. Setting the structure

Set values for each structure as shown below.

How to set initial values: See “Step 1-2. Reading process” on page 3-21.

How to set the buzzer: See “Step 6-1. Buzzer setting” on page 3-46.

How to set MICR: See “Step 5-1. Selecting the MICR font” on page 3-41.

How to set OCR-A/B font: See “Step 6-3. Obtaining/Displaying/Storing read data
(CALLBACK process)” on page 3-48.

How to set MF_PROCESS: See “Step 4-1. Setting the Process When a Reading Error
Occurs” on page 3-36.

How to set MF_IQA: See “Step 8-1. Setting the IQA process” on page 3-64.

How to set MF_BARCODE: See “Step 8-2. Setting the barcode decode” on page 3-66.

6. Registering the electric endorsement data (fixed data)

Register data (image/text) to paste on read front or back image data. (See “Step 3-2. Setting
electric endorsement (fixed data)” on page 3-31.)
Registered electric endorsement data is automatically pasted on obtained image data.
If you want to specify pasting/not pasting in applications or change electric endorsement data,
register electric endorsement data in "8. CALLBACK process (Normal completion of reading
process)". (See “Step 3-4. Obtaining/Displaying read data (CALLBACK process)” on page 3-34).

Structure Settings

MF_BASE01 Buzzer setting

MF_SCAN Scanning setting (resolution, size of character string to add, and so on)

MF_MICR MICR setting (E13B/CMC7 and so on)

OCR setting

MF_OCR_AB OCR-A/B font setting

MF_PROCESS Selecting the processing mode (High speed/Confirmation)

Setting the operation when an error (double-feeding/insertion orientation/
noise/Bad Data) is detected.

Setting the operation when a pocket near full is detected.
To prevent paper jams in pockets, it is recommended to set
MF_PROCESS.bNearFullSelect = MF_NEARFULL_NOT_PERMIT. (Default:
MF_NEARFULL_PERMIT)

MF_IQA IQA setting

MF_BARCODE Barcode setting (Behavior at barcode decode/barcode decode error)

3-4 Programming guide Rev.D

7. Reading process

Obtain a transaction number (See “Step 2-2. Obtaining/Displaying read data (CALLBACK
process)” on page 3-26), and then use either one of the following APIs depending on the process
mode to start the reading process. (See “Step 1-2. Reading process” on page 3-21, "Step 2-1.
Reading process" on page 3-25, and "Step 3-3. Reading process" on page 3-33.)

When reading process has started, scanning both sides and MICR reading start at the same
time.

Basic structure of API for reading process

Processing mode API Description

High-speed mode BiSCNMICRFunctionContinuously Automatically performs franking and sorting
documents into the pockets without stopping
feeding paper in the ASF.

Confirmation mode BiSCNMICRFunctionContinuously
BiSCNMICRFunctionPostPrint

Stops paper feeding for each paper, and
performs franking and sorting document into the
pockets following the application judgement.

<Note>
Overlap will not be realized even if BiSCNMICRFunctionPostPrint is executed repeatedly.

<Caution>
During processing with overlap, two documents may be in the paper path.
The transaction number tells you which document is jammed when a paper jam occurs.

bActivationMode
of the MF_PROCESS structure

BiSCNMICRFunctionContinuously
Once called, continues reading process
until no document is left in the ASF.

Once called, performs reading process
for one document.

MF_ACTIVATE_MODE_HIGH_SPEED
Automatic franking/sorting following setting of
MF_PROCESS

60DPM model: with overlap (fixed)
30DPM mode: without overlap (fixed)

MF_ACTIVATE_MODE_HIGH_SPEED
Automatic franking/sorting following setting of
MF_PROCESS
Without overlap (fixed)

MF_ACTIVATE_MODE_CONFIRMATION
Franking/sorting following the application

MF_PROCESS_CONTINUE_OVERLAP
With overlap

MF_PROCESS_CONTINUE_NOOVERLAP
Without overlap (fixed)

MF_PROCESS_CONTINUE_OVERLAP
Without overlap (disabled even if set)

MF_PROCESS_CONTINUE_NOOVERLAP
Without overlap

(Setting is impossible with 30DPM model only

BiSCNMICRFunctionPostPrint

MF_ACTIVATE_MODE_CONFIRMATION
Franking/sorting following the application

API used in reading process The 4th parameter (bNextCheck)
of BiSetBehaviorToScanResult

90DPM model: with overlap (fixed)

Rev.D Programming guide 3-5

TM-S1000 API for EMEA Reference Guide

8. CALLBACK process (Normal completion of reading process)

In this reading process, events (processing status) and return values return in the following
order.

After confirming the MF_DATARECEIVE_DONE status, perform the required process in the
CALLBACK function following the steps below.

1. Obtaining MICR data. (See "Step 2-2. Obtaining/Displaying read data (CALLBACK
process)" on page 3-26.)

2. Specifying image data format and obtaining front image data.(See "Step 2-2. Obtaining/
Displaying read data (CALLBACK process)" on page 3-26.)

3. Pasting electric endorsement (different image/text for each reading) (See "Step 3-4.
Obtaining/Displaying read data (CALLBACK process)" on page 3-34.)

4. Specifying the readable area and obtaining OCR-A/B data. (See "Step 6-3. Obtaining/
Displaying/Storing read data (CALLBACK process)" on page 3-48.)

5. Specifying image data format and obtaining back image data. (See "Step 2-2. Obtaining/
Displaying read data (CALLBACK process)" on page 3-26.)

6. In the confirmation mode, specifying the ejection pocket, franking/not franking, and
overlapping/not overlapping (Use BiSetBehaviorToScnResult.). (See "Step 4-2.
Obtaining/Displaying read data (CALLBACK process)" on page 3-39.)

The timing of return of events (processing status) and return values are shown below.

Event Status Return value

➀ Start of reading process MF_FUNCTION_START SUCCESS

➁ Start of paper feeding MF_CHECHPAPER_PROCESS_START SUCCESS

➂ Start of data reception MF_DATARECEIVE_START SUCCESS

➃ End of data reception MF_DATARECEIVE_DONE SUCCESS

➄ End of paper feeding MF_CHECKPAPER_PROCESS_DONE SUCCESS

➅ End of reading process MF_FUNCTION_DONE SUCCESS

Start Eject

Paper feeding

Scanner

Start of
reading process

Success of
obtainig data End of reading

process

The CALLBACK function and return values registered
with BiSCNMICRSetStatusBackFunction

3-6 Programming guide Rev.D

9. CALLBACK process (paper jam error occurred)

It is a paper jam error when paper is not detected at positions expected from feeding amount.
The event (status) and return value differ depending on the timing of a paper jam error and
whether read data is discarded or obtained.
This section describes process of the following 3 patterns. Troubleshooting for a paper jam error
is also described.

• When a paper jam error occurs after end of data reception

• When a paper jam error occurs during obtaining data and option is set to discarded the
read data.

• When a paper jam error occurs during obtaining data and option is set to keep the read
data.

• How to recover from a paper jam error

For error handling, see "Step 7-3. Error handling" on page 3-55.

When a paper jam error occurs after end of data reception

ERR_PAPER_JAM is returned as a return value of MF_FUNCTION_DONE.

The timing of return of events (processing status) and return values is shown below.

Note:
In this case, MF_CHECKPAPER_PROCESS_DONE is not returned.

End of data reception MF_DATARECEIVE_DONE , SUCCESS

<<A paper jam error occurs.>>

End of reading process MF_FUNCTION_DONE , ERR_PAPER_JAM

Paper feeding

Start Eject
A paper jam occurs.

Scanner

Success of
obtaining dataStart of

reading process

The CALLBACK function and return values registered
with BiSNMICRSetStatusBackFunction

Rev.D Programming guide 3-7

TM-S1000 API for EMEA Reference Guide

When a paper jam error occurs during obtaining data
and option is set to discarded the read data

Note:
Specify MF_RESULT_NONE for bResultPartialData of the MF_PROCESS structure in advance to
discard read data.

ERR_PAPER_JAM is returned as a return value of MF_FUNCTION_DONE.

The timing of return of events (processing status) and return values is shown below.

Note:
In this case, MF_CHECKPAPER_PROCESS_DONE and MF_DATARECEIVE_DONE are not
returned.

Start of reading process MF_DATARECEIVE_START , SUCCESS

<<A paper jam error occurs.>>

End of reading process MF_FUNCTION_DONE , ERR_PAPER_JAM

A paper jam occurs.
EjectStart

Paper feeding

Scanner

Failure of
obtaining dataStart of

reading process

3-8 Programming guide Rev.D

When a paper jam error occurs during obtaining data
and option is set to keep the read data.

Note:
Specify MF_RESULT_PARTIAL for bResultPartialData of the MF_PROCESS structure in advance to
obtain read data.

When a paper jam occurs, MF_ERROR_OCCURRED and ERR_PAPER_JAM are returned.

The timing of return of events (processing status) and return values is shown below.

Note:
In this case, MF_CHECKPAPER_PROCESS_DONE is not returned.

How to recover from a paper jam error

Open the covers of the TM-S1000 and remove the paper in the paper path. Then, call
BiCancelError from the application to recover from a paper jam error.
Confirm the sensor status with the CALLBACK function of device status (See "3,4. Registering
the CALLBACK function" on page 3-2.) or BiGetStatus to display a message prompting users to
remove jammed paper.

Start of reading process MF_DATARECEIVE_START , SUCCESS

<<A paper jam error occurs.>>

Error occurrence MF_ERROR_OCCURRED , ERR_PAPER_JAM

End of data reception MF_DATARECEIVE_DONE , SUCCESS

End of reading process MF_FUNCTION_DONE , ERR_PAPER_JAM

Start Eject
A paper jam occurs.

Paper feeding

Scanner

Start of
reading process

Failure of
obtaining data
Sending
incomplete data

Rev.D Programming guide 3-9

TM-S1000 API for EMEA Reference Guide

MF_PROCESS structure

By setting values for members of the MF_PROCESS structure, setting the eject pocket or
franking/not franking is possible. Pay attention to the following items.

❏ Enabling ➀ the double feeding detection is also necessary to detect ➁ the insertion
orientation error.

❏ When the detection of ➃ No data and ➄ Bad data is enabled, setting the ejection pocket or
franking operation reduces the processing speed.

❏ The priority order of the detection is; ➀ Double feed is the highest and ➄ Bad data is the
lowest. When more than one detection is enabled, the operation setting whose priority is the
highest has the priority.

Example: When the following two settings are set.

• If insertion orientation error is detected: Ejection into the main pocket

• If No data is detected: Ejection into the sub pocket

When the both are detected at the same time, the former setting has the priority and
documents are ejected into the main pocket even if No data is detected.

❏ If a reading error occurs when the ejection pocket is set to “no ejection,” the TM-S1000 stops
feeding the document and goes to the recoverable error status (See the TM-S1000 Technical
Reference Guide.) and the error LED flashes. In this case, open the covers of the TM-S1000
and remove the documents. And then call BiCancelError from the application to recover
from the recoverable error.

❏ If none of magnetic waveform is detected from the paper, both ➁ the insertion orientation
error and ➃ No data error occur.

Detectable item Detection Judgement condition

➀ Double feed Firmware The paper thickness is more than specified with bPaperType or has changed.

➁ Insertion
orientation error

Firmware The firmware analyzes the magnetic waveform and judges a upside down
and wrong side (front/back) of documents. (wrong side: only for E13B)

➂ Noise Firmware Noises are detected in the magnetic waveform.

➃ No data API The magnetic waveform was not detected.

➄ Bad data API Unanalyzable characters were detected more than the number specified
with bBaddataCount.

3-10 Programming guide Rev.D

MF_IQA structure

MF_IQA structure is a structure that performs IQA (Image Quality Assurance) analysis of
scanned data. IQA is a standard of the FSTC (Financial Services Technology Consortium). Pay
attention to the following description.

❏ The priority order of error detection
MF_IQA detects IQA error after the error detection by MF_PROCESS structure is finished.
When MF_PROCESS structure detects an error, the operation set for MF_PROCESS has
priority.

❏ Confirmation of the result of IQA validation
Setting for MF_IQA is executed when image data is scanned. By calling BiGetIQAResult at
that time, IQA validation result (MF_IQA_RESULT structure) can be confirmed.

❏ MF_IQA structure setting

Content Member Description

IQA function bErrorSelect Enables/Disables IQA function.

Operation when IQA
error is detected

bErrorEject Sets the ejection pockets for a document.

bStamp Sets the franking process.

bCancel Sets whether the reading process of a document is
continued/canceled.

Image quality of IQA
validation setting

bImageFormat Sets an image format.

bColorDepth Sets the gradation.

bThreshold Sets the density threshold.

bColor Sets color.

bExOption Sets the variety of density adjustment.

sResolution Sets the resolution.

Detected items

bUndersize Enables/Disables UndersizeImage validation.

bOversize Enables/Disables OversizeImage validation.

bMincompressed Enables/Disables MinCompressedImageSize validation.

bMaxcompressed Enables/Disables MaxCompressedImageSize validation.

bFront_rear Enables/Disables FrontRearImageMismatch validation.

bToolight Enables/Disables ImageTooLight validation.

bToodark Enables/Disables ImageTooDark validation.

bStreaks Enables/Disables HorizontalStreaksPresent validation.

bNoise Enables/Disables ExcessiveSpotNoise validation.

bFocus Enables/Disables ImageOutOfFocus validation.

bCorners Enables/Disables FoldedTornDocCorners validation.

bEdges Enables/Disables FoldedTornDocEdges validation.

bFraming Enables/Disables DocFramingError validation.

bSkew Enables/Disables ExcessiveDocSkew validation.

bCarbon Enables/Disables CarbonStripDetection validation.

bPiggyback Enables/Disables Piggyback validation.

Rev.D Programming guide 3-11

TM-S1000 API for EMEA Reference Guide

MF_BARCODE structure

MF_BARCODE structure is a structure that decodes a barcode data from the scanned image
data. Pay attention to the following description when using it.

Note:
Decoding a barcode data decelerates the scanning speed. For the details, refer to "API used for each
processing mode and its setting" on page 3-14.

❏ Barcode decoding setting
Before scanning, configure the following settings for this structure.

• Specifying the barcode symbols to decode
By specifying the barcodes to decode, the deceleration of the scanning speed can be
reduced.

• Specifying the decoding directions
Specify the direction referring to the following table. The decoded result will be returned
in the decoded order.

• Configuring the error remedy process when decoding fails
Configures enabling/disabling the decode error detection, selection of ejection pocket,
franking, and canceling the scanning operation.

❏ Decoding barcodes and acquiring barcode data
Use the following APIs when decoding barcodes and acquiring barcode data.

• BiGetBarcodeData: API for decoding when scanning

• BiDecodeBarcode: API for decoding the scanned image file

❏ Error remedy process when decoding fails
The barcode decode error is processed according to the setting of this structure.
This error is detected the last. That is, if a bad data error or the like occurs in advance when
the decoding is successfully complete, this decoding is regarded as an error. For the details,
refer to "Error detections and operation priorities" on page 3-12.

Decoding direction (bDirection) Description

MF_BARCODE_DIRECTION_ALL

When decoding horizontally lined barcodes, they are
decoded from left to right.

When decoding vertically lined barcodes, they are decoded
from top to bottom.

If both horizontally lined barcodes and vertically lined
barcodes exist, they are decoded from left to right.

MF_BARCODE_DIRECTION_LEFTRIGHT
Barcodes are decoded from left to right. If barcodes are
lined vertically, they are decoded from top to bottom.

MF_BARCODE_DIRECTION_TOPBOTTOM
Barcodes are decoded from top to bottom. If barcodes are
lined horizontally, they are decoded from right to left.

MF_BARCODE_DIRECTION_RIGHTLEFT
Barcodes are decoded from right to left. If barcodes are
lined vertically, they are decoded from bottom to top.

MF_BARCODE_DIRECTION_BOTTOMTOP
Barcodes are decoded from bottom to top. If barcodes are
lined horizontally, they are decoded from left to right.

3-12 Programming guide Rev.D

Error detections and operation priorities

Error detections (Double feed/Insertion orientation error/Noise/No data/Bad data/IQA/
Barcode decode error) and operation priorities when an error occurs are shown below.

MICR recognition result
-With/Without No data
-With/Without Bad data

IQA verification result
-Test results

Operation when double feed occurs
-Ejection pocket
-Franking
-Continuance of reading process

Operation when noise occurs
-Ejection pocket
-Franking
-Continuance of reading process

Operation when No data occurs
-Ejection pocket
-Franking
-Continuance of reading process

Operation when Bad data occurs
-Ejection pocket
-Franking
-Continuance of reading process

Operation when IQA error occurs
-Ejection pocket
-Franking
-Continuance of reading process

-Operation when normal end
-Ejection pocket
-Franking

Operation when insertion
orientation error occurs
-Ejection pocket
-Franking
-Continuance of reading process

Double feed occurred?
Error occurred

Error occurred

Error occurred

Error occurred

Error did not occur

Error did not occur

With waveform

Error did not occur

Without waveform

Error did not occur

NOT_PASS did not occur

NOT_PASS occurred
as IQA result?

Insertion orientation error
occurred?

Noise occurred?

No data occurred?

Bad data occurred?

End

NOT_PASS
 occurred

Scanning result
-With/without double feed
-With/without insertion
 orientation error
-With/without Noise

Barcode decode
error occurred?

Error occurred

Error did not occur

Behavior at barcode decode error
-Ejection pocket
-Franking
-Continuance of reading process

Barcode decoding result
-Occurrence of barcode
 decode error

Rev.D Programming guide 3-13

TM-S1000 API for EMEA Reference Guide

Operation when an error occurs in each mode

* If the ejection setting when an error occurs of MF_PROCESS / MF_IQA/ MF_BARCODE
structure is MF_EJECT_NOEJECT, the printer operates following the setting of
MF_PROCESS / MF_IQA/ MF_BARCODE structure.

Process when an error
occurs

Operation setting when an error occurs

High-speed mode Confirmation mode Waterfall mode

Sorting to ejection pockets

Setting of MF_PROCESS / MF_IQA/ MF_BARCmODE
structure

Setting of
BiSetWaterfallMode*

Franking Setting ofMF_PROCESS/
MF_IQA/ MF_BARCODE
structureReading cancel

3-14 Programming guide Rev.D

API used for each processing mode and its setting

API to use and API setting differs depending on the TM-S1000 models and processing modes.
Refer to the following description to create applications for your purposes.

Processing modes for 30 dpm models

*1 Overlap
Performs: While feeding a document, starts feeding the next document.
Does not perform: After ejecting a document, starts feeding the next document.

*2 Enabling the detection of No Data/Bad Data described above reduces the processing speed. For details, see
"MF_PROCESS structure" on page 3-9.

*3 Depends on the application.

*4 MF_PROCESS structure
One of the structures the TM-S1000 API has. Setting values for its members can change the processing mode or
enable automatic franking process or sorting documents into the pockets when an error (double feed/insertion
orientation error/noise/No Data/Bad Data) is detected.

*5 Makes settings for Waterfall mode when using the Waterfall function in Confirmation mode.

Processing mode High-speed mode Waterfall mode Confirmation mode

Function
Automatically performs franking and sorting
documents into the pockets without stopping
feeding paper in the ASF.

Stops paper feeding for
each paper, and performs
franking and sorting
document into the pockets
following the application
judgement.

Overlap*1 Does not perform. Does not perform.

Detectable items
Double feed/insertion orientation error/noise
/No Data/Bad Data

*3

Processing
 speed *2

IQA

Disabled 30 dpm

Maximum 28 DPM *3
Enabled

❒ When document sorting/franking is performed:
28 dpm

❒ When document sorting/franking is not performed:
30 dpm

Barcode

Disabled 30 dpm

Maximum 28 DPM *3
Enabled

❒ When document sorting/franking is performed:
28 dpm

❒ When document sorting/franking is not performed:
30 dpm

API BiSCNMICRFunctionContinuously

BiSCNMICRFunctionContinu
ously

BiSCNMICRFunctionPostPrint

bActivationMode, a member of
MF_PROCESS structure*4

MF_ACTIVATE_MODE_HIGH_SPEED
MF_ACTIVATE_MODE_CONF
IRMATION

The forth parameter of
BiSetBehaviorToScnResult
(bNextCheck)

Does not use the API described at the left.
MF_PROCESS_CONTINUE_N
OOVERLAP

Waterfall
(BiSetWaterfallMode)

WATERFALL_MODE_DISABL
E

WATERFALL_MODE_STA
NDARD

*5
WATERFALL_MODE_INHE
RIT_POCKET

Rev.D Programming guide 3-15

TM-S1000 API for EMEA Reference Guide

Processing modes for 60 dpm models

*1 Overlap
Performs: While feeding a document, starts feeding the next document.
Does not perform: After ejecting a document, starts feeding the next document.

*2 Enabling the detection of No Data/Bad Data described above reduces the processing speed. For details, see
"MF_PROCESS structure" on page 3-9.

*3 Depends on the application.

*4 MF_PROCESS structure
One of the structures the TM-S1000 API has. Setting values for its members can change the processing mode or
enable automatic franking process or sorting documents into the pockets when an error (double feed/insertion
orientation error/noise/No Data/Bad Data) is detected.

*5 Makes settings for Waterfall mode when using the Waterfall function in Confirmation mode.

Processing mode High-speed mode Waterfall mode
Confirmation mode
(without overlap)

Confirmation mode
(with overlap)

Function Automatically performs franking and
sorting documents into the pockets
without stopping feeding paper in the
ASF.

Stops paper feeding
for each paper, and
performs franking
and sorting
document into the
pockets following
the application
judgement.

Stops paper feeding
for each paper, and
performs franking
and sorting
document into the
pockets following
the application
judgement.

Overlap*1 Performs. Does not perform. Performs.

Detectable items Double feed/insertion orientation
error/noise/No Data/Bad Data

*3

Processing
speed *2

IQA Disabled 60 dpm 28 DPM *3 40 DPM *3

Enabled ❒ When document sorting/franking is
performed: 32 dpm

❒ When document sorting/franking is
not performed:60 dpm

32 DPM *3

Barcode Disabled 60 dpm 28 DPM *3 40 DPM *3

Enabled ❒ When document sorting/franking is
performed: 32 dpm

❒ When document sorting/franking is
not performed:60 dpm

32 DPM *3

API BiSCNMICRFunctionContinuously BiSCNMICRFunction
Continuously

BiSCNMICRFunction
Continuously

BiSCNMICRFunctionP
ostPrint

bActivationMode, a member of
 MF_PROCESS structure*4

MF_ACTIVATE_MODE_HIGH_SPEED MF_ACTIVATE_MODE
_CONFIRMATION

MF_ACTIVATE_MOD
E_CONFIRMATION

The forth parameter of
BiSetBehaviorToScnResult
(bNextCheck)

Does not use the API described in the
Processing mode column.

MF_PROCESS_CONTI
NUE_NOOVERLAP

MF_PROCESS_CONTI
NUE_OVERLAP

Waterfall
(BiSetWaterfallMode)

WATERFALL_MOD
E_DISABLE

WATERFALL_MOD
E_STANDARD

*5

WATERFALL_MOD
E_INHERIT_POCKE
T

3-16 Programming guide Rev.D

Processing modes for 90 dpm models

*1 Overlap
Performs: While feeding a document, starts feeding the next document.
Does not perform: After ejecting a document, starts feeding the next document.

*2 Enabling the detection of No Data/Bad Data described above reduces the processing speed. For details, see
"MF_PROCESS structure" on page 3-9.

*3 Depends on the application.

Processing mode High-speed mode Waterfall mode
Confirmation mode
(without overlap)

Confirmation mode
(with overlap)

Function Automatically performs franking
and sorting documents into the
pockets without stopping feeding
paper in the ASF.

Stops paper feeding
for each paper, and
performs franking
and sorting
document into the
pockets following the
application
judgement.

Stops paper feeding
for each paper, and
performs franking and
sorting document
into the pockets
following the
application
judgement.

Overlap*1 Performs. Does not perform. Performs.

Detectable items Double feed/insertion orientation
error/noise/No Data/Bad Data

*3

Processing
speed *2

IQA Disabled ✼ Personal Check: 90 DPM
✼ Business Check: 75 DPM

28 DPM *3 40 DPM *3

Enabled ❒ When document sorting/franking
is performed:32 dpm

❒ When document sorting/franking
is not performed:
✼ Personal Check: 90 DPM
✼ Business Check: 75 DPM

32 DPM *3

Barcode Disabled ✼ Personal Check: 90 DPM
✼ Business Check: 75 DPM

28 DPM *3 40 DPM *3

Enabled ❒ When document sorting/franking
is performed:32 dpm

❒ When document sorting/franking
is not performed:
✼ Personal Check: 90 DPM
✼ Business Check: 75 DPM

32 DPM *3

API BiSCNMICRFunctionContinuously BiSCNMICRFunctionC
ontinuously

BiSCNMICRFunctionC
ontinuously

BiSCNMICRFunctionP
ostPrint

bActivationMode, a member of
MF_PROCESS structure*4

MF_ACTIVATE_MODE_HIGH_SPEED MF_ACTIVATE_MODE
_CONFIRMATION

MF_ACTIVATE_MODE_
CONFIRMATION

The forth parameter of
BiSetBehaviorToScnResult
(bNextCheck)

Does not use the API described in
the Processing mode column.

MF_PROCESS_CONTI
NUE_NOOVERLAP

MF_PROCESS_CONTI
NUE_OVERLAP

Waterfall
(BiSetWaterfallMode)

WATERFALL_MODE
_DISABLE

WATERFALL_M
ODE_STANDAR
D

*5

WATERFALL_M
ODE_INHERIT_P
OCKET

Rev.D Programming guide 3-17

TM-S1000 API for EMEA Reference Guide

*4 MF_PROCESS structure
One of the structures the TM-S1000 API has. Setting values for its members can change the processing mode or
enable automatic franking process or sorting documents into the pockets when an error (double feed/insertion
orientation error/noise/No Data/Bad Data) is detected.

*5 Makes settings for Waterfall mode when using the Waterfall function in Confirmation mode.

3-18 Programming guide Rev.D

Sample Programs

Programming with the TM-S1000 API is described using 8 functional level sample programs.

Step 1: Opening/Closing the device
Describes how to execute the device opening/closing process and reading process.

Step 2: Displaying read data
In addition to Step 1, describes how to display read image and MICR data on the
application screen.

Step 3: Continuous reading/Electric endorsement
In addition to Step 2, describes how to set the processing methods (continuous
reading/one-by-one reading) and electric endorsement.

Step 4: Process setting when a reading error occurs
In addition to Step 3, describes process setting such as how to sort documents into
the two pockets automatically when a reading error occurs or how to process
differently depending on a read result in an application.

Step 5: Selecting the MICR font and setting the image quality
In addition to Step 4, describes selecting a MICR font and setting the image quality.

Step 6: Reading OCR-A/B font and buzzer setting
In addition to Step 5, describes how to read an OCR-A/B font with the OCR
function and buzzer setting.

Step 7: Confirming the Device status and error handling
In addition to Step 6, describes how to confirm the device status, how to handle
errors (pocket near-full/paper jam error), and how to process MICR cleaning.

Step 8: Decoding a barcode, confirming the IQA and Waterfall process
In addition to Step 7, describes how to decode a barcode, how to confirm the IQA
and how to process Waterfall.

Rev.D Programming guide 3-19

TM-S1000 API for EMEA Reference Guide

Step 1 Opening/Closing the Device

Process opening and closing the device. Also execute the reading process. The read data will be
displayed in Step 2.

Step 1-3. Process to end use of the device

Registering CALLBACK function

BiSCNMICRSetStatusBackFunction

Setting initial values

BiSCNMICRFunctionPostPrint

Step 1-1. Process before use of the device

Reading

BiSCNMICRFunctionPostPrint

CALLBACK process

Step 1-2. Reading process

BiSCNMICRCancelStatusBack

BiCloseMonPrinter

Opening the device

BiOpenMonPrinter

Canceling CALLBACK function

Closing the device

3-20 Programming guide Rev.D

Step 1-1. Process before use of the device

Perform the following processes before using the device:

• Opening the device

• Registering the CALLBACK function

Opening device

Specify a device type for the first parameter and specify a device name for the second parameter
of BiOpenMonPrinter, and then the TM-S1000 will be searched and a handle will be obtained.

m_iHandle = BiOpenMonPrinter (TYPE_PRINTER, “TM-S1000U”)

Note:
A handle is returned to m_iHandle in the sample programs. Hereafter, the handle is used for the other
functions. If the searched TM-S1000 is used by the other application, ERR_Access is returned to
m_iHandle. Specify the device type, “TYPE_PRINTER” for compatibility with the TM-J9000 API
although a printer is not installed on the TM-S1000.

Programing code
APIUsage.cpp CAPIUsage::CAPIUsage()

m_iHandle = BiOpenMonPrinter(TYPE_PRINTER, “TM-S1000U”);

if(m_iHandle < SUCCESS){

::MessageBox(NULL,_T("Unable to connect to printer\n\nEnsure Driver installed
correctly\nand Printer is powered on"),GetResultString(m_iHandle),MB_OK);

return;

}

Registering the CALLBACK function

Forsuch incidents as starting/ending document processing or data reception, the TM-S1000 API
causes an event (For details on events, see "8. CALLBACK process (Normal completion of
reading process)" on page 3-5.) Register the CALLBACK function that is called when the event
occurs. Specify the handle obtained above for the first parameter and CALLBACK function
name for the second parameter of BiSCNMICRSetStatusBackFunction to register the
CALLBACK function.

nErr= BiSCNMICRSetStatusBackFunction (m_iHandle, cbScanStatus)

Note:
In the sample programs, a CALLBACK function named cbScanStatus is specified. The status when an
event occurs can be obtained in this CALLBACK function.

Programming code
APIUsage.cpp
int CALLBACK cbScanStatus(DWORD dwTransactionNumber, WORD wMainStatus, WORD wSubStatus,

LPSTR pPortName)

{

CTMS1000SampleDlg* pDlg = (CTMS1000SampleDlg*)(theApp.m_pMainWnd);

if(pDlg != NULL){

pDlg->m_api.ScanStatus(dwTransactionNumber, wMainStatus, wSubStatus, pPortName);

}

return 0;

}

Rev.D Programming guide 3-21

TM-S1000 API for EMEA Reference Guide

APIUsage.cpp CAPIUsage::CAPIUsage()
CheckResponse(BiSCNMICRSetStatusBackFunction(m_iHandle, cbScanStatus));

Step 1-2. Reading process

Perform the reading process (image and MICR reading) of the TM-S1000 and confirm the
processing status with the CALLBACK function. How to display the read data is described in
Step 2.

Initial value setting

Specify initial values for structures using BiSCNMICRFunctionPostPrint, one of the functions
that execute the reading process.

1. Specify the memory address of each structure for the second parameter and each parameter
as shown below for the third parameter of BiSCNMICRFunctionPostPrint to call the initial
value for each structure. (For detailed information on initial values, see
"BiSCNMICRFunctionContinuously" on page 4-58.) How to change the initial values is
described in Step 4.

nErr= BiSCNMICRFunctionPostPrint (m_iHandle, lpvStruct, MF_GET_xxxx_DEFAULT)

2. Call BiSCNMICRFunctionPostPrint as follows to set values for each structure.

nErr= BiSCNMICRFunctionPostPrint (m_iHandle, lpvStruct, MF_SET_xxxx_PARAM)

Note:
Set for the MF_BASE01 at first.
The initial value of the lpString in MF_PRINT01 is NULL. If the initial value is not changed,
ERR_PARAM will return to nErr. Set a value other than NULL.

Programing code

APIUsage.cpp CAPIUsage::Configure()

// Base
m_tBase01.iSize = sizeof(MF_BASE01);
m_tBase01.iVersion = MF_BASE_VERSION01;
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tBase01, MF_GET_BASE_DEFAULT));
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tBase01, MF_SET_BASE_PARAM));

Structure Description Parameter to call

MF_BASE01 Structure of the TM-S1000 basic
operation

MF_GET_BASE_DEFAULT
0x0030

MF_SCAN Structure of the scanning function MF_GET_SCAN_FRONT_DEFAULT
0x0032
MF_GET_SCAN_BACK_DEFAULT
0x0033

MF_MICR Structure of the MICR function MF_GET_MICR_DEFAULT
0x0031

MF_PRINT01 Structure of the electric
endorsement function

MF_GET_PRINT_DEFAULT
0x0034

MF_PROCESS Structure of the optional functions MF_GET_PROCESS_DEFAULT
0x0035

3-22 Programming guide Rev.D

// Scan front
m_tScanFront.iSize = sizeof(MF_SCAN);
m_tScanFront.iVersion = MF_SCAN_VERSION;
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tScanFront, MF_GET_SCAN_DEFAULT));
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tScanFront,

MF_SET_SCAN_FRONT_PARAM));

// Scan back
m_tScanBack.iSize = sizeof(MF_SCAN);
m_tScanBack.iVersion = MF_SCAN_VERSION;
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tScanBack, MF_GET_SCAN_DEFAULT));
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tScanBack,

MF_SET_SCAN_BACK_PARAM));

// Micr
m_tMicr.iSize = sizeof(MF_MICR);
m_tMicr.iVersion = MF_MICR_VERSION;
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tMicr, MF_GET_MICR_DEFAULT));
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tMicr, MF_SET_MICR_PARAM));

// Print
m_tPrint.iSize = sizeof(MF_PRINT01);
m_tPrint.iVersion = MF_PRINT_VERSION01;
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tPrint, MF_GET_PRINT_DEFAULT));
// If the pString values of the m_tPrint structure are all NULL, an error occurs.
m_tPrint.lpString[0] = ""; // Specify a null character
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tPrint, MF_SET_PRINT_PARAM));

// Process
m_tProcess.iSize = sizeof(MF_PROCESS);
m_tProcess.iVersion = MF_PROCESS_VERSION;
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tProcess,

MF_GET_PROCESS_DEFAULT));
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tProcess, MF_SET_PROCESS_PARAM));

Reading process

Specify a handle for the first parameter, NULL for the second parameter, and MF_EXEC for the
third parameter of BiSCNMICRFunctionPostPrint to start the reading process.

nErr= BiSCNMICRFunctionPostPrint (m_iHandle , NULL , MF_EXEC)

Programming code

APIUsage.cpp CAPIUsage::Scan()

CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, NULL, MF_EXEC));

Rev.D Programming guide 3-23

TM-S1000 API for EMEA Reference Guide

CALLBACK process

After reading documents has started, the registered CALLBACK function will be called every
time an event occurs when starting reading process, starting document processing, starting data
reception, ending reception of reading data, ending document processing, and ending reading
process.
If MF_FUNCTION_DONE status (an event when ending reading process) is confirmed in
CALLBACK function, reading process has finished.

Note:
You need to confirm the return value of MF_FUNCTION_DONE to judge whether the reading process
was successful or an error occurred.

 Programming code

CAPIUsage.cpp CAPIUsage::ScanStatus()
void CAPIUsage::ScanStatus(DWORD dwTransactionNumber, WORD wMainStatus, WORD wSubStatus,

LPSTR pPortName)

{

if(wMainStatus == MF_FUNCTION_DONE){

::SetEvent(m_hScanEvent);

}

Step 1-3. Process to end use of the device

Perform the following processes to end using the device:

• Cancelling the CALLBACK function

• Closing the device

Cancelling the CALLBACK function

Specify a handle for the parameter of BiSCNMICRCancelStatusBack to cancel the registered
CALLBACK function.

nErr = BiSCNMICRCancelStatusBack (m_iHandle)

Programming code

CAPIUsage.cpp CAPIUsage::CancelScan()
BiSCNMICRCancelStatusBack(m_iHandle);

Closing the device

Specify a handle for the parameter of BiCloseMonPrinter to close the device.

nErr = BiCloseMonPrinter (m_iHandle)

Programming code

CAPIUsage.cpp CAPIUsage::CancelScan()
BiCloseMonPrinter(m_iHandle);

3-24 Programming guide Rev.D

Step 2 Displaying the Read Data

In addition to Step 1, display read images and MICR data on the application screen.

BiSCNSelectScanFace
BiSCNSetImageFormat
BiGetScanImage

Process before use of the device (same as Step 1)

Reading process
BiSCNMICRFunctionPostPrint

Obtaining/Displaying MICR data

Step 2-1. Reading process

BiGetMicrText

Step 2-2. Obtaining/Displaying read data (CALLBACK process)

Obtaining the transaction number

BiGetTransactionNumber

Process to end use of the device (same as Step 1)

Setting initial values

BiSCNMICRFunctionPostPrint

Obtaining/Displaying image data

Rev.D Programming guide 3-25

TM-S1000 API for EMEA Reference Guide

Step 2-1. Reading process

Follow the steps below to perform the reading process.

• Initial value setting (same as Step 1)

• Obtaining the transaction number

• Reading process (image + MICR)

Obtaining the transaction number

Specify the memory address where a transaction number is stored for the second parameter of
BiGetTransactionNumber to obtain the transaction number that is used for reading process.
Every time the BiGetTransactionNumber is called, the transaction number is incremented.

nErr= BiGetTransactionNumber (m_iHandle, lpdwTransactionNumber)

Programming code

CAPIUsage.cpp CAPIUsage::GetTransactonNumber()

DWORD dwTransactionNumber = 0;
BiGetTransactionNumber(m_iHandle, &dwTransactionNumber);

 As the result, 1 returns to dwTransactionNumber as the transaction number.

Reading image/MICR

Specify NULL for the second parameter and MF_EXEC for the third parameter of
BiSCNMICRFunctionPostPrint to execute image and MICR reading.

nErr= BiSCNMICRFunctionPostPrint (m_iHandle, NULL , MF_EXEC)

Programming code

APIUsage.cpp CAPIUsage::Scan()

CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, NULL, MF_EXEC));

Note:
BiSCNMICRFunctionPostPrint performs reading image and MICR at the same time.
In Step 2, readable MICR font is E13B and readable image is 2 values, black and white. These settings can
be changed in Step 5.
The TM-S1000 stops scanning operation when 10 scanned-in images are stored in the driver. The
TM-S1000 resumes the scanning operation when the number of stored images becomes two or fewer.
Therefore, the application should process the scanned-in images quickly.

3-26 Programming guide Rev.D

Step 2-2. Obtaining/Displaying read data (CALLBACK process)

Obtain and display read data with the CALLBACK function.

• Confirming data reception end

• Obtaining/Displaying MICR data

• Obtaining/Displaying image data

Confirming data reception end

Confirm the MF_DATARECEIVE_DONE status with the CALLBACK function to confirm data
reception end.

Obtaining/Displaying MICR data

Follow the steps below to obtain MICR data.

1. Specify MF_MICR_USE_MICR (use the magnetic head for reading MICR characters) for
bMicOcrSelect of the MF_MICR structure.

MF_MICR.bMicOcrSelect = MF_MICR_USE_MICR

Note:
The magnetic head (USE_MICR) or OCR (USE_OCR) is selectable for MICR reading. However,
usually select the magnetic head (USE_MICR) for a higher recognition rate.

2. Specify the transaction number for the second parameter and the memory address of the
MF_MICR structure for the third parameter of BiGetMicrText to obtain MICR data.

nErr = BiGetMicrText (m_iHandle , dwTransactionNumber , ptMicr)

3. MICR data returns to szMicrStr of the MF_MICR structure.

4. MICR data is obtained in the CALLBACK function and displayed on the application.

Programming code

APIUsage.cpp CAPIUsage::ScanStatus()

m_tMicr.bMicOcrSelect = MF_MICR_USE_MICR;
iResult = BiGetMicrText(m_iHandle, dwTransactionNumber, &m_tMicr);
TCHAR pMicr[1024];
_tcscpy(pMicr, m_tMicr.szMicrStr);

Rev.D Programming guide 3-27

TM-S1000 API for EMEA Reference Guide

Obtaining/Displaying image data

Each image data of the front and back side is individually obtained and displayed. Follow the
steps below.

1. Specify the side to obtain for the second parameter of BiSCNSelectScanFace.
nErr= BiSCNSelectScanFace (m_iHandle , MF_SCAN_FACE_xxxx)

2. Specify the image data format for the second parameter of BiSCNSetImageFormat.

nErr= BiSCNSetImageFormat (m_iHandle, EPS_BI_SCN_xxxx)

3. Specify the transaction number for the second parameter and the memory address of the
MF_SCAN structure for the third parameter to obtain image data.

nErr = BiGetScanImage (m_iHandle, dwTransactionNumber, ptScan)

4. Image data returns to lpbScanData and the size of the image data returns to dwScanSize of
the MF_SCAN structure.

5. Image data is obtained and displayed by the application.

Programming code

APIUsage.cpp CAPIUsage::ScanStatus()

iResult = BiSCNSelectScanFace(m_iHandle, MF_SCAN_FACE_FRONT);
if(iResult == SUCCESS){

iResult = BiSCNSetImageFormat(m_iHandle, EPS_BI_SCN_BITMAP);
if(iResult == SUCCESS){

iResult = BiGetScanImage(m_iHandle, dwTransactionNumber, &m_tScanFront);
if(iResult == SUCCESS && m_tScanFront.lpbScanData != NULL){

pDlg->SetImage(m_tScanFront.lpbScanData, m_tScanFront.dwScanSize,
TRUE);

GlobalFree(m_tScanFront.lpbScanData);
m_tScanFront.lpbScanData = NULL;

}
}

}

MF_SCAN_FACE_xxxx Description

MF_SCAN_FACE_FRONT (0) Selects the front side (default)

MF_SCAN_FACE_BACK (1) Selects the back side

EPS_BI_SCN_xxxx Description

EPS_BI_SCN_TIFF(1) TIFF format CCITT (Group 4) compressed data (default)

EPS_BI_SCN_BITMAP(3) Bitmap format uncompressed data

3-28 Programming guide Rev.D

Step 3 Continuous Reading/Electric Endorsement

In addition to Step 2, set the processing method (continuous reading/one-by-one reading) and
electric endorsement.

Step 3-1. Setting intital values with API depending on the processing method.

Continuous mode: BiSCNMICRFunctionContinuously

One-by-one mode: BiSCNMICRFunctionPostPrint

Step 3-2. Setting electric endorsement (fixed data)

Selecting the side to attach the electric endorsement

BiSetPrintStation

Buffering endorsement data

BiBufferedPrint
BiSetPrintPosition

BiSetPrintSize
BiPrintImage

Registering the buffered endorsement data

BiBufferedPrint

Process before use of the device (same as Step 1)

Deleting registered endorsement data

BiBufferedPrint

Rev.D Programming guide 3-29

TM-S1000 API for EMEA Reference Guide

Continuos reading

Step 3-3. Reading process

Obtaining the transaction number

One-by-one reading
BiSCNMICRFunctionContinuously

BiSCNMICRFunctionPostPrint

Step 3-4. Obtaining/Displaying read data (CALLBACK process)

Pasting electric endorsement data

BiSetPrintPosition
BiPrintText

Processing methods: continuous reading/one-by-one reading

Obtaining/Displaying MICR/image data (front)

Obtaining/Displaying image data (back)

Process to end use of the device (same as Step 1)

3-30 Programming guide Rev.D

Step 3-1. Setting the processing method

The TM-S1000 has the following two processing methods. Initialize structures with API
depending on the processing method.

Continuous reading

With BiSCNMICRFunctionContinuously, call and set initial values of the structures the same
way as in Step 1-2.

1. Call initial values of structures

nErr= BiSCNMICRFunctionContinuously (m_iHandle, lpvStruct,
MF_GET_xxxx_DEFAULT)

2. Set the initial values

nErr= BiSCNMICRFunctionContinuously (m_iHandle, lpvStruct MF_SET_xxxx_PARAM)

Note:
Process data stored in the driver within 500ms after the data is acquired to prevent the
processing speed from slowing down.

One-by-one reading

With BiSCNMICRFunctionPostPrint, call and set initial values of structures in the same way as
Step 1-2.

1. Call initial values of structures
nErr= BiSCNMICRFunctionPostPrint (m_iHandle, lpvStruct, MF_GET_xxxx_DEFAULT)

2. Set the initial values
nErr= BiSCNMICRFunctionPostPrint (m_iHandle, lpvStruct, MF_SET_xxxx_PARAM)

Processing method API to use Description

Continuous
reading

BiSCNMICRFunctionContinuously Once called, continues reading
until no paper is left in the ASF.
Another API can cancel the
reading.

One-by-one
reading

BiSCNMICRFunctionPostPrint Once called, reads only one sheet
of paper.

Rev.D Programming guide 3-31

TM-S1000 API for EMEA Reference Guide

Step 3-2. Setting electric endorsement (fixed data)

Fixed data for electric endorsement that can be registered. (If you need to use different
endorsement data depending on reading result, See “Step 3-4. Obtaining/Displaying read data
(CALLBACK process)” on page 3-34.)

• Select the side to attach the electric endorsement

• Delete registered endorsement data

• Buffer endorsement data

• Register buffered endorsement data

Selecting the side to attach the electric endorsement

Specify the side to attach the electric endorsement for the second parameter of BiSetPrintStation.

nErr= BiSetPrintStation(m_iHandle , wStation)

Programming code

CAPIUsage.cpp CAPIUsage::Configure()

CheckResponse(BiSetPrintStation(m_iHandle, MF_ST_E_ENDORSEMENT));

Deleting registered endorsement data

Specify MF_PRT_CLEAR for the second parameter of BiBufferedPrint to delete electric
endorsement data that is already registered.

nErr = BiBufferedPrint (m_iHandle, MF_PRT_CLEAR)

Programming code

CAPIUsage.cpp CAPIUsage::Configure()

CheckResponse(BiBufferedPrint(m_iHandle, MF_PRT_CLEAR));

wStation Description

MF_ST_E_ENDORSEMENT Attaches to the back side.

MF_ST_E_ENDORSEMENT_BACK Attaches to the back side.

MF_ST_E_ENDORSEMENT_FRONT Attaches to the back side.

3-32 Programming guide Rev.D

Buffering endorsement data

1. Specify MF_PRT_BUFFERING for the second parameter of BiBufferedPrint.

nErr = BiBufferedPrint (m_iHandle, MF_PRT_BUFFERING)

Programming code

CAPIUsage.cpp CAPIUsage::ConfigureMultiple()

CAPIUsage.cpp CAPIUsage::ConfigureSingle()

CheckResponse(BiBufferedPrint(m_iHandle, MF_PRT_BUFFERING));

2. Specify the horizontal direction for the second parameter and vertical direction for the third
parameter of BiSetPrintPosition for the pasting starting position.

nErr = BiSetPrintPosition (m_iHandle, wHorizontal, wVertical)

3. Specify the horizontal direction for the second parameter and vertical direction for the third
parameter of BiSetPrintSiz for the pasting size.

nErr = BiSetPrintSize (m_iHandle, wWidth, wHeight)

4. Specify image data for the second parameter of BiPrintImage to buffer it.

nErr = BiPrintImage (m_iHandle, pFileName)

Note:
Specify the image file using the full path.
Use BiPrintText to specify text. (See Step 3-4.)
Specify the rotation direction of the electric endorsement by calling BiPrintImage
BiSetEndorseDirection before calling BiSetEndorseDirection.

Programming code

APIUsage.cpp CAPIUsage::ConfigureEndorseImage()

CheckResponse(BiSetPrintPosition(m_iHandle, 100, 30));
CheckResponse(BiSetPrintSize(m_iHandle, 30, 30));
CheckResponse(BiPrintImage(m_iHandle, "Image.jpg"));

Registering buffered endorsement data

By specifying MF_PRT_EXEC for BiBufferedPrint for the second parameter, specified
endorsement data is registered and attached to the image data specified for BiSetPrintStation
each time reading is performed.

nErr = BiBufferedPrint (m_iHandle, MF_PRT_EXEC)

Programming code

CAPIUsage.cpp CAPIUsage::ConfigureMultiple()

CAPIUsage.cpp CAPIUsage::ConfigureSingle()

CheckResponse(BiBufferedPrint(m_iHandle, MF_PRT_EXEC));

Rev.D Programming guide 3-33

TM-S1000 API for EMEA Reference Guide

Step 3-3. Reading process

For continuous reading

Specify NULL for the second parameter and MF_EXEC for the third parameter of
BiSCNMICRFunctionContinuously to start the reading process.

nErr= BiSCNMICRFunctionContinuously (m_iHandle, NULL, MF_EXEC)

Note:
Obtaining/displaying read data is performed by the CALLBACK process.

Programming code

APIUsage.cpp CAPIUsage::ScanMultiple()

CheckResponse(BiSCNMICRFunctionContinuously(m_iHandle, NULL, MF_EXEC));

For one-by-one reading

Specify NULL for the second parameter and MF_EXEC for the third parameter of
BiSCNMICRFunctionPostPrint to start the reading process.

nErr= BiSCNMICRFunctionPostPrint (m_iHandle, NULL, MF_EXEC)

Note:
Obtaining/displaying read data is performed by the CALLBACK process.

Programming code

APIUsage.cpp CAPIUsage::ScanSingle()

CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, NULL, MF_EXEC));

3-34 Programming guide Rev.D

Step 3-4. Obtaining/Displaying read data (CALLBACK process)

As in Step 2, confirm the MF_DATARECEIVE_DONE with the CALLBACK function, and then
obtain MICR data and front image data. By following the steps below before obtaining image
data, the endorsement data can be attached on the side of the image data specified for
BiSetPrintStation each time reading is performed.

Pasting endorsement data

1. Specify the horizontal direction for the second parameter and the vertical direction for
the third parameter of BiSetPrintPosition for the pasting starting position.

nErr = BiSetPrintPosition (m_iHandle, wHorizontal, wVertical)

2. Specify the print data for the second parameter and the memory address (character
decoration information) of the DECORATE structure for the third parameter of
BiPrintText to paste text endorsement data.

nErr = BiPrintText (m_iHandle, szText, tDecorate)

Note:
Specify the rotation direction of the electric endorsement by calling BiSetEndorseDirection before
calling BiPrintText.

Programming code

APIUsage.cpp CAPIUsage::ConfigureEndorseText()

CheckResponse(BiSetPrintPosition(m_iHandle, 10, 60));

MF_DECORATE m_tDecorate;

m_tDecorate.dwAttribute = MF_PRINT_COLOR;

m_tDecorate.wFont = MF_PRINT_SYSTEMFONT;

m_tDecorate.szFontName = "Arial";

m_tDecorate.wFontSize = 30;

CheckResponse(BiPrintText(m_iHandle, "Transaction#:<00000000>\x0D\x0A", m_tDecorate));

Rev.D Programming guide 3-35

TM-S1000 API for EMEA Reference Guide

Step 4 Setting the Process When a Reading Error Occurs

In addition to Step 3, sort documents into the two pockets automatically when a reading error
occurs or process differently depending on the read result in an application.

* Waterfall mode can also be implemented. For how to implement, see "Step 8 Decoding a barcode, confirming the IQA
and Waterfall process" on page 3-61.

Process before use of the device (same as Step 1)

Setting the processing method (same as Step 3)

Setting electric endorsement (fixed data) (same as Step 3)

Step4-1. Setting the process when a reading error occurs *

Obtaining initial values of the MF_PROCESS structure
BiSCNMICRFunctionContinuously
BiSCNMICRFunctionPostPrint

Setting the values

BiSCNMICRFunctionContinuously
BiSCNMICRFunctionPostPrint

Changing settings of the MF_PROCESS structure members

Reading process (same as Step 3)

3-36 Programming guide Rev.D

Step 4-1. Setting the Process When a Reading Error Occurs
Set the process when a reading error occurs.

Setting MF_PROCESS

Set values for the members of MF_PROCESS with BiSCNMICRFunction before reading process
to specify the process mode and process method after errors.

• Calling initial values of the MF_PROCESS

• Changing values of members if necessary

• Setting values of the MP_PROCESS structure

1. Specify the memory address of the MF_PROCESS structure for the second parameter and
MF_GET_PROCESS_DEFAULT for the third parameter of BiSCNMICRFunctionXXXX to
call initial values of the MF_PROCESS structure.

nErr= BiSCNMICRFunctionContinuously (m_iHandle, lpvStruct,
MF_GET_PROCESS_DEFAULT)

Note:
Use BiSCNMICRFunctionPostPrint when the process method is one-by-one reading.

Obtaining/Displaying MICR data

Step 4-2. Obtaining/displaying read data (CALLBACK process)

Obtaing/Displaying image data

Pasting electric endorsement

Processing method: continuous reading/one-by-one reading

Process in the confirmation mode
BiSetBehaviorToScnResult

Process to end use of the device (same as Step 1)

Rev.D Programming guide 3-37

TM-S1000 API for EMEA Reference Guide

2. Change the default values of members of the MF_PROCESS structure if necessary.

• Process mode (bActivationMode)

Note:
In the high-speed mode, documents are automatically processed according to the following
MF_PROCESS settings. In the confirmation mode, documents are processed depending on read
results by the application’s or user’s judgement. (See Step 4-2.)

Example:

• Judgement of insertion orientation error (bPaperMisInsertionErrorSelect)

• Ejection pocket when an insertion orientation error (bPaperMisInsertionErrorEject)
occurs

3. Specify the memory address of the MF_PROCESS structure for the second parameter and
MF_SET_PROCESS_PARAM for the third parameter of the BiSCNMICRFunctionXXXX to
set the operation.

nErr= BiSCNMICRFunctionContinuously (m_iHandle, lpvStruct,
MF_SET_PROCESS_PARAM)

Note:
Use BiSCNMICRFunctionPostPrint when the process method is one-by-one reading.

bActivationMode Description

MF_ACTIVATE_MODE_CONFIRMATION (0) Processes in the confirmation mode.

MF_ACTIVATE_MODE_HIGH_SPEED (1) Processes in the high-speed mode.

bPaperMisInsertionErrorSelect Description

MF_ERROR_SELECT_NODETECT (0) Does not detect the error.

MF_ERROR_SELECT_DETECT (1) Detects the error.

bPaperMisInsertionErrorEject Description

MF_EJECT_MAIN_POCKET (0x22) Ejects into the main pocket.

MF_EJECT_SUB_POCKET (0x24) Ejects into the sub pocket.

MF_EJECT_NOEJECT (0x28) Does not eject.

3-38 Programming guide Rev.D

Programming code

APIUsage.cpp CAPIUsage::ConfigureMultiple()

APIUsage.cpp CAPIUsage::ConfigureSingle()

CheckResponse(BiSCNMICRFunction(m_iHandle, &m_tProcess, MF_GET_PROCESS_DEFAULT));
SetProcessStruct();
CheckResponse(BiSCNMICRFunction(m_iHandle, &m_tProcess, MF_SET_PROCESS_PARAM));

APIUsage.cpp CAPIUsage::SetProcessStruct()

m_tProcess.bActivationMode = m_pProperties->GetValueDefTrue(ACTIVATE_MODE);

m_tProcess.bPaperMisInsertionErrorSelect = m_pProperties->GetValue-
DefTrue(PAPER_MIS_INSERT_DETECT);

m_tProcess.bPaperMisInsertionErrorEject = ChangeEject(m_pProperties->GetValueDef-
False(PAPER_MIS_INSERT_EJECT));

Rev.D Programming guide 3-39

TM-S1000 API for EMEA Reference Guide

Step 4-2. Obtaining/Displaying read data (CALLBACK process)

Documents are automatically processed as set with MF_PROCESS in the high-speed mode,
while judgements by applications or users can be added in the confirmation mode. The
confirmation mode is described below.

After MF_DATARECEIVE_DONE is confirmed with the CALLBACK function, the next
processing method for read data is decided by an application or user. And then, specify the
operation of the TM-S1000 with BiSetBehaviorToScnResult. Specify the eject pocket for the
second parameter (bEject), franking process for the third parameter (bStamp), and next reading
process for the forth parameter (bNextCheck) to process errors for each document.

Note:
When BiSetBehaviorToScnResult is not called before the CALLBACK function is returned, processing is
performed following the settings of MF_PROCESS.

nErr = BiSetBehaviorToScnResult (m_iHandle, bEject, bStamp, bNextCheck)

bEject: Specify the ejection pocket

bStamp: franking process

bNextCheck: next reading process

Programming code

APIUsage.cpp CAPIUsage::ScanStatus()

BiSetBehaviorToScnResult(
m_iHandle,
ChangeEject(m_pProperties->GetValue(CONFIRMATION_EJECT)),
m_pProperties->GetValueDefFalse(CONFIRMATION_STAMP),
ChangeNextCheck(m_pProperties->GetValue(CONFIRMATION_NEXT_CHECK)));

bEject Description

MF_EJECT_MAIN_POCKET (0x22) Ejects into the main pocket.

MF_EJECT_SUB_POCKET (0x24) Ejects into the sub pocket.

MF_EJECT_NOEJECT (0x28) Does not eject.

bStamp Description

MF_STAMP_DISABLE (0) Does not perform franking.

MF_STAMP_ENABLE (1) Performs franking.

bNextCheck Description

MF_PROCESS_CONTINUE_OVERLAP (1) Starts the next reading process while ejecting documents.

MF_PROCESS_CONTINUE_NOOVERLAP (2) Starts the next reading process after ejecting documents.

MF_PROCESS_CONTINUE_CANCEL (3) Cancels the next reading process.

3-40 Programming guide Rev.D

Step 5 Setting MICR Font/Image Quality

In addition to the Step 4, select the MICR font and set the image quality.

Process before use of the device (same as Step 1)

Setting the processing method (same as Step 3)

Setting electric endorsement (fixed data) (same as Step 3)

Step 5-1. Setting the MICR font to read

BiSCNMICRFunctionContinuously
BiSCNMICRFunctionPostPrint

Setting the process when a reading error occurs (same as Step 4)

Reading process (same as Step 3)

Step 5-2. Obtaining/Displaying/Storing read data (CALLBACK process)

Processing method: Continuous reading/one-by-one reading

Setting the image quality
BiSCNSetImageQuality

Obtainign/Displaying MICR data (same as Step 2)

Pasting electric endorsement (same as Step 3)

Rev.D Programming guide 3-41

TM-S1000 API for EMEA Reference Guide

Step 5-1. Selecting the MICR font

After calling initial values of the MICR structure (MF_MICR), set the MICR font for the member
(bFont) of the MICR structure to select the MICR font (E13B or CMC7) to read.

1. Specify the memory address of the MF_MICR structure for the second parameter and
MF_GET_MICR_DEFAULT for the third parameter of BiSCNMICRFunctionXXXX to call
initial values of the MICR structure.

nErr= BiSCNMICRFunctionPostPrint (m_iHandle, lpvStruct, MF_GET_MICR_DEFAULT)

Note:
Use BiSCNMICRFunctionContinuously when the process method is continuous reading.

2. Specify the MICR font for bFont, the member of the MF_MICR structure.

bFont Font

MF_MICR_FONT_E13B (0) E13B (default)

MF_MICR_FONT_CMC7 (1) CMC7

Step 5-2. Obtaining/Displaying/Storing read data (CALLBACK process)

Obtaining/Displaying image data (same as Step 2)

Processing method: Continuous reading/one-by-one reading

Storing read data

Process in the confirmation mode (same as Step 4)

Process to end use of the device (same as Step 1)

3-42 Programming guide Rev.D

3. Specify the memory address of the MF_MICR structure for the second parameter and
MF_SET_MICR_PARAM for the third parameter of BiSCNMICRFunctionXXXX to set the
MICR font to read.

nErr= BiSCNMICRFunctionPostPrint (m_iHandle, lpvStruct, MF_SET_MICR_PARAM)

Note:
Use BiSCNMICRFunctionContinuously when the process method is continuous reading.

Programming code

APIUsage.cpp CAPIUsage::ConfigureMultiple()

APIUsage.cpp CAPIUsage::ConfigureSingle()

CheckResponse(BiSCNMICRFunctionContinuously(m_iHandle, &m_tMicr, MF_GET_MICR_DEFAULT));
if(!m_pProperties->GetValueDefFalse(OCR_FONT)){

m_tMicr.bFont = MF_MICR_FONT_E13B;
}else{

m_tMicr.bFont = MF_MICR_FONT_CMC7;
}
CheckResponse(BiSCNMICRFunctionContinuously(m_iHandle, &m_tMicr, MF_SET_MICR_PARAM));

Step 5-2. Obtaining/Displaying/Storing read data (CALLBACK process)

After confirming DATA_RECEIVE_DONE with the CALLBACK function, call
BiSCNSetimageQuality to set image quality.

Setting scanning format

• Selecting the face to set image quality

• Setting image reading quality

1. Specify the side to set image quality for the second parameter of BiSCNSelectScanFace>

nErr= BiSCNSelectScanFace(m_iHandle, MF_SCAN_FACE_xxxx)

MF_SCAN_FACE_xxxx Description

MF_SCAN_FACE_FRONT (0) Selects the front side

MF_SCAN_FACE_BACK (1) Selects the back side

Rev.D Programming guide 3-43

TM-S1000 API for EMEA Reference Guide

2. Set the graduation for the second parameter (bColorDepth), threshold value for the third
parameter (bThreshold), EPS_BI_SCN_MONOCHROME for the forth parameter, and
sharpness and so on for the fifth parameter (ExOption) of BiSCNSetImageQuality.

nErr= BiSCNSetImageQuality(m_iHandle, bColorDepth, bThreshold,
 EPS_BI_SCN_MONOCHROME, bExOption)

bColorDepth: graduation

bThreshold: Threshold value

bExOption: Option

Programming code

APIUsage.cpp CAPIUsage::ScanStatus()

iResult = BiSCNSelectScanFace(m_iHandle, MF_SCAN_FACE_FRONT);

if(iResult == SUCCESS){
BYTE byColorDepth = m_pProperties->GetValueDefFalse(FRONT_GRAYSCALE) ?

EPS_BI_SCN_8BIT : EPS_BI_SCN_1BIT;
iResult = BiSCNSetImageQuality(m_iHandle, byColorDepth, 0, EPS_BI_SCN_MONOCHROME,

EPS_BI_SCN_SHARP_CUSTOM2);
}

bColorDepth Description

EPS_BI_SCN_1BIT(1) Black and white (default)

EPS_BI_SCN_8BIT(8) 256 grayscale

bThreshold Description

-128 127 Thicker as the value increases

0 TM-S1000 standard density (default)

bThreshold Description

EPS_BI_SCN_MANUAL(49) Thicker as the value increases

EPS_BI_SCN_SHARP(50) Sharpness (default)

3-44 Programming guide Rev.D

Step 6 Reading OCR-A/B Font and Buzzer Setting

In addition to Step 5, read the OCR-A/B font with the OCR function and notify the reading
result with the buzzer.

Setting the MICR font to read (same as Step 5)

Step 6-1. Buzzer setting

Obtaining initial values of the MF_BASE01 structure
BiSCNMICRFunctionContinuously
BiSCNMICRFunctionPostPrint

Changing settings of the MF_BASE01 structure members

Setting values

BiSCNMICRFunctionContinuously
BiSCNMICRFunctionPostPrint

Process before use of the device (same as Step 1)

Setting the processing method (same as Step 3)

Setting electric endorsement (fixed data) (same as Step 3)

Setting the process when a reading error occurs (same as Step 4)

Rev.D Programming guide 3-45

TM-S1000 API for EMEA Reference Guide

Storing read data (same as Step 5)

Setting image quality (same as Step 5)

Obtaining the OCR-A/B font reading result

Structure: MF_OCR_AB
BiGetOcrABText

Continuous reading/One-by-one reading (same as Step 3)

Step 6-2. Reading process

Obtaining the transaction number (same as Step 3)

Stopping buzzer beeping

BiRingBuzzer

Processing method: Continuous reading/one-by-one reading

Step 6-3. Obtaining/displaying/storing read data (CALLBACK process)

Obtaining/Displaying MICR data (same as Step 2)

Pasting electric endorsement (same as Step 3)

Obtaing/Displaying image data (same as Step 2)

Process in the confirmation mode (same as Step 4)

3-46 Programming guide Rev.D

Step 6-1. Buzzer setting

After calling initial values of the BASE structure (MF_BASE01), set the buzzer frequency for
bBuzzerHz (a member of the BASE structure) and the number of buzzer sounds for
bBuzzerCount (a member of the BASE structure) to notify reading results with the buzzer
sounds. Set the buzzer for each reading result with the array of each BASE structure member.

1. Specify the memory address of the MF_BASE01 structure for the second parameter and
MF_GET_BASE_DEFAULT for the third parameter of BiSCNMICRFunctionXXXX to call
initial values of the BASE structure.

nErr= BiSCNMICRFunctionPostPrint (m_iHandle, lpvStruct, MF_GET_BASE_DEFAULT)

Note:
Use BiSCNMICRFunctionContinuously when the process method is continuous reading.

Programming code

APIUsage.cpp CAPIUsage::ConfigureMultiple()

APIUsage.cpp CAPIUsage::ConfigureSingle()

m_tBase01.iSize = sizeof(MF_BASE01);
m_tBase01.iVersion = MF_BASE_VERSION01;
CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tBase01,

MF_GET_BASE_DEFAULT)
);

2. Set bBuzzerHz and bBuzzerCount, members of the MF_BASE01 structure as follows:

bBuzzerHz: frequency

Reading result Array

Reading was successful. MF_BUZZER_TYPE_SUCCESS (0)

Reading error occurred. MF_BUZZER_TYPE_ERROR (1)

Double-feeding occurred. MF_BUZZER_TYPE_WFEED (2)

bBuzzerHz Description

MF_BUZZER_HZ_440 (0) 440Hz

MF_BUZZER_HZ_880 (1) 880Hz

MF_BUZZER_HZ_4000 (2) 4000Hz

Process to end use of the device (same as Step 1)

Rev.D Programming guide 3-47

TM-S1000 API for EMEA Reference Guide

bBuzzerCount: number of buzzer sounds

Note:
In the sample programs, the number of buzzer sounds is specified by the constant number. Specifying
an actual number of buzzer sounds is also possible. (Domain: 0 bBuzzerCount 127)

Programming code

APIUsage.cpp CAPIUsage::SetBaseStruct()

m_tBase01.bBuzzerHz[MF_BUZZER_TYPE_SUCCESS] = BuzzerHz(m_pProperties->
GetValueDefFalse(BEEP_SUCCESS_HZ));

m_tBase01.bBuzzerCount[MF_BUZZER_TYPE_SUCCESS] = BuzzerCount(m_pProperties->
GetValueDefFalse(BEEP_SUCCESS_COUNT));

m_tBase01.bBuzzerHz[MF_BUZZER_TYPE_ERROR] = BuzzerHz(m_pProperties->
GetValueDefFalse(BEEP_ERROR_HZ));

m_tBase01.bBuzzerCount[MF_BUZZER_TYPE_ERROR] = BuzzerCount(m_pProperties->
GetValueDefFalse(BEEP_ERROR_COUNT));

m_tBase01.bBuzzerHz[MF_BUZZER_TYPE_WFEED] = BuzzerHz(m_pProperties->
GetValueDefFalse(BEEP_WFEED_HZ));

m_tBase01.bBuzzerCount[MF_BUZZER_TYPE_WFEED] = BuzzerCount(m_pProperties->
GetValueDefFalse(BEEP_WFEED_COUNT));

3. Specify the memory address of the MF_BASE01 structure for the second parameter and
MF_SET_BASE_PARAM for the third parameter of BiSCNMICRFunctionXXXX to set the
buzzer.

nErr= BiSCNMICRFunctionPostPrint (m_iHandle, lpvStruct, MF_SET_BASE_PARAM)

Note:
Use BiSCNMICRFunctionContinuously when the process method is continuous reading.

Programming code

APIUsage.cpp CAPIUsage::ConfigureMultiple()

APIUsage.cpp CAPIUsage::ConfigureSingle()

CheckResponse(BiSCNMICRFunctionPostPrint(m_iHandle, &m_tBase01, MF_SET_BASE_PARAM));

bBuzzerCount Description

MF_BUZZER_DISABLE (0) Does not sound the buzzer.

MF_BUZZER_COUNT_MAX (3) Sounds three times.

3-48 Programming guide Rev.D

Step 6-2. Reading process

Specify 0 for the second, third, forth, and fifth parameter of BiRingBuzzer while the buzzer is
beeping to stop the buzzer.

nErr= BiRingBuzzer (m_iHandle, 0, 0, 0, 0)

Note:
This process stops the beeping sounds, but the buzzer sounds at the next reading process. See "Step 6-
1. Buzzer setting" on page 3-46 to disable the buzzer.

Programming code

APIUsage.cpp CAPIUsage::StopBuzzer()

BiRingBuzzer(m_iHandle, 0, 0, 0, 0);

Step 6-3. Obtaining/Displaying/Storing read data (CALLBACK process)

After confirming DATA_RECEIVE_DONE, set the memory address (MF_OCR_AB) of the
OCR_AB structure and call BiGetOcrABText to obtain read results of OCR-A/B from image
data.

1. Set values for members of the MF_OCR_AB structure.

• Fonts to obtain (bOcrType)

• Character direction in the OCR readable area (bDirection)

• Start position of the OCR readable area in x-coordinate (wStartX)
Specify in the range from 0 to 255 (unit: mm). If a value out of the range is specified, it is
rounded to the nearest value in the range.

bOcrType Description

MF_OCR_FONT_OCRA_NUM (1) Numeric OCR-A font

MF_OCR_FONT_OCRA_ALPHA (2) Alphabetic OCR-A font

MF_OCR_FONT_OCRA_ALPHANUM (3) Alphanumeric OCR-A font

MF_OCR_FONT_OCRA_ALPHANUM_WOOH (7) Alphanumeric OCR-A font (except OH)

MF_OCR_FONT_OCRA_ALPHANUM_WOZERO (11) Alphanumeric OCR-A font (except ZERO)

MF_OCR_FONT_OCRB_NUM (17) Numeric OCR-B font

MF_OCR_FONT_OCRB_ALPHA (18) Alphabetic OCR-B font

MF_OCR_FONT_OCRB_ALPHANUM (19) Alphanumeric OCR-B font

MF_OCR_FONT_OCRB_ALPHANUM_WOOH (23) Alphanumeric OCR-B font (except OH)

MF_OCR_FONT_OCRB_ALPHANUM_WOZERO (27) Alphanumeric OCR-B font (except ZERO)

bDirection Description

MF_OCR_LEFTRIGHT (1) From left to right (normal direction)

MF_OCR_TOPBOTTOM (2) From top to bottom (Rotate 90 clockwise)

MF_OCR_RIGHTLEFT (3) From right to left (upside down)

MF_OCR_BOTTOMTOP (4) From bottom to top (Rotate 90 counterclockwise)

Rev.D Programming guide 3-49

TM-S1000 API for EMEA Reference Guide

• Start position of the OCR readable area in y-coordinate (wStartY)
Specify in the range from 0 to 255 (unit: mm). If a value out of the range is specified, it is
rounded to the nearest value in the range.

• End position of the OCR readable area in x-coordinate (wEndX)
Specify in the range from 0 to 255 (unit: mm). If a value out of the range is specified, it is
rounded to the nearest value in the range.
If OCR_AREA_RIGHT is specified, the right end of image data is specified.

• End position of the OCR readable area in y-coordinate (wEndY)
Specify in the range from 0 to 255 (unit: mm). If a value out of the range is specified, it is
rounded to the nearest value in the range.
If OCR_AREA_BOTTOM is specified, the bottom end of image data is specified.

• Handling space characters (bSpaceHandling)

2. Specify the transaction number (dwTransactionNumber) for the second parameter,
OCR_SOURCE_TRANSACTION_NUMBER for the third parameter (bImageSource), "" for
the forth parameter (szFileName), and the memory address of the OCR_AB structure for the
fifth parameter (ptMicr) of BiGetOcrABText to obtain OCR-A/B font data.

nErr = BiGetOcrABText (m_iHandle , dwTransactionNumber ,
OCR_SOURCE_TRANSACTION_NUMBER , ““ ,
MF_OCR_AB)

3. OCR-A/B font data returns to szOcrStr of the MF_OCR_AB structure.

4. Obtain OCR-A/B font data in the CALLBACK function and display it on the application.

Programming code

APIUsage.cpp CAPIUsage::ScanStatus()

// get ocr ab data
TCHAR pOcrAb[1024];
MF_OCR_AB mfOcrAb;
mfOcrAb.iSize = sizeof(MF_OCR_AB);
mfOcrAb.iVersion = MF_OCR_AB_VERSION;
//Specify Font
switch(m_pProperties->GetValueDefFalse(OCR_AB_FONT)){

case 0:
mfOcrAb.bOcrType = MF_OCR_FONT_OCRA_ALPHANUM;
_tcscpy(pOcrAb, "OCR_A:");
break;

case 1:
mfOcrAb.bOcrType = MF_OCR_FONT_OCRB_ALPHANUM;
_tcscpy(pOcrAb, "OCR_B:");
break;

}

bSpaceHandling Description

OCR_SPACE_ENABLE (1) Includes space characters in the OCR reading results.

OCR_SPACE_DISABLE (0) Does not include space characters in the OCR reading results.

3-50 Programming guide Rev.D

mfOcrAb.bDirection = MF_OCR_LEFTRIGHT;
mfOcrAb.wStartX = 30;
mfOcrAb.wStartY = 40;
mfOcrAb.wEndX = 110;
mfOcrAb.wEndY = 75;
mfOcrAb.bSpaceHandling = OCR_SPACE_ENABLE;
::ZeroMemory(mfOcrAb.szOcrStr, sizeof(mfOcrAb.szOcrStr));
//Obtain the OCR_AB character string.
iResult = BiGetOcrABText(m_iHandle, dwTransactionNumber, OCR_SOURCE_TRANSACTION_NUMBER,

"", &mfOcrAb);
//Copy the obtained character string.
_tcscpy(pOcrAb + strlen("OCR_X:"), mfOcrAb.szOcrStr);
if(iResult != SUCCESS){

//Add a error code.
_tcscat(pOcrAb, " (");
_tcscat(pOcrAb, GetResultString(iResult));
_tcscat(pOcrAb, ") ");

}
//Display the OCR_AB character string.
pDlg->SetOcrString(pOcrAb);

Rev.D Programming guide 3-51

TM-S1000 API for EMEA Reference Guide

Step 7 Confirming the Device status and error handling

In addition to Step 6, describes how to confirm the device status, how to handle errors (pocket
near-full/paper jam error), and how to process MICR cleaning.

Note:
Device status is a status that is notified mainly when the sensor status of the TM-S1000 has changed.

Opening the device (same as Step 1)

Registering CALLBACK function for reading process

Step 7-1. Process before use of the device

Registering the CALLBACK function for Device status notification
BiSetStatusBackFunction

Setting the processing method (same as Step 3)

Setting electric endorsement (fixed data) (same as Step 3)

Setting the MICR font to read (same as Step 5)

Setting the process when a reading error occurs (same as Step 4)

Reading process (same as Step 3)

Step 7-2. Confirming the Device status
(Device status CALLBACK process)

(same as Step 1)

3-52 Programming guide Rev.D

Step 7-1. Process before use of the device

Registering the CALLBACK function for Device status notification

Register the CALLBACK function with BiSetStatusBackFunction, then the event (Device status)
that occurs mainly when the sensor status of the TM-S1000 has changed calls the CALLBACK
function. Specify the CALLBACK function name for the second parameter of
BiSetStatusBackFunction to register the CALLBACK function.

nErr= BiSetStatusBackFunction (m_iHandle , cbStatus)

Note:
In sample programs, the CALLBACK function named cbStatus is specified. The notified status
(dwStatus) can be obtained in this CALLBACK function.

Programming code
APIUsage.cpp

// Called when notifying the status
int CALLBACK cbStatus(DWORD dwStatus)
{

// Sets the status in DeviceStatusDlg
((CTMS1000SampleDlg*)(theApp.m_pMainWnd))->m_DeviceStatusDlg.SetDeviceStatus(dwStatus);

return 0;
}

APIUsage.cpp CAPIUsage::CAPIUsage()

// Register the callback destination of the status notification
CheckResponse(BiSetStatusBackFunction(m_iHandle, cbStatus));

Obtaining/Displaying/Storing read data (same as Step 6)

(CALLBACK process)

Process to end use of the device (same as Step 1)

Pocket near full
BiGetStatus

BiRingBuzzer

Paper jam error

BiCancelError

Step 7-3. Error handling process (CALLBACK process)

Rev.D Programming guide 3-53

TM-S1000 API for EMEA Reference Guide

Step 7-2. Confirming Device status

When the status of the device (such as sensors) changes, the CALLBACK function registered in
"Step 7-1. Process before use of the device" is called back. The device status can be confirmed
with the notified Device status (dwStatus).) For types of Device status, see "Device Status" on
page 4-1.

Note:
In sample programs, Device status is notified to dwStatus, a parameter.
Registering the CALLBACK function is not necessary to obtain the Device status. By calling
BiGetStatus, it can be obtained in real time even during the reading process. (See "Step 7-3. Error
handling" on page 3-55.) All sensor statuses detected by the TM-S1000 are included in the obtained
status (4 bytes). For the sensors, see the TM-S1000 Technical Reference Guide.

Programming code

DeviceStatusDlg.cpp CDeviceStatusDlg::SetDeviceStatus(DWORD dwStatus)

// Renewal the check box by the status
void CDeviceStatusDlg::SetDeviceStatus(DWORD dwStatus)
{

// Display the status
CString strStatus;
strStatus.Format("Device Status - %08Xh", dwStatus);
::SetWindowText(this->m_hWnd, strStatus);

// ASB_NO_RESPONSE
if(dwStatus == ASB_NO_RESPONSE){

// ASB_NO_RESPONSE
((CButton*)GetDlgItem(IDC_CHECK_NO_RESPONSE))->SetCheck(TRUE);
// ASB_OFF_LINE
((CButton*)GetDlgItem(IDC_CHECK_OFF_LINE))->SetCheck(FALSE);
// ASB_COVER_OPEN
((CButton*)GetDlgItem(IDC_CHECK_COVER_OPEN))->SetCheck(FALSE);
// ASB_WAIT_PEPRT_EJECT
((CButton*)GetDlgItem(IDC_CHECK_WAIT_PEPRT_EJECT))->SetCheck(FALSE);
// ASB_MECHANICAL_ERR
((CButton*)GetDlgItem(IDC_CHECK_MECHANICAL_ERR))->SetCheck(FALSE);
// ASB_UNRECOVER_ERR
((CButton*)GetDlgItem(IDC_CHECK_UNRECOVER_ERR))->SetCheck(FALSE);
// ASB_PAPER_INTERMEDIATE
((CButton*)GetDlgItem(IDC_CHECK_PAPER_INTERMEDIATE))->SetCheck(FALSE);
// ASB_MAIN_NEAR_FULL
((CButton*)GetDlgItem(IDC_CHECK_MAIN_NEAR_FULL))->SetCheck(FALSE);
// ASB_EJECT_SENSOR_NO_PAPER
((CButton*)GetDlgItem(IDC_CHECK_EJECT_SENSOR_NO_PAPER))->

SetCheck(FALSE);
// ASB_SUB_NEAR_FULL
((CButton*)GetDlgItem(IDC_CHECK_SUB_NEAR_FULL))->SetCheck(FALSE);
// ASB_SLIP_PAPER_SIZE
((CButton*)GetDlgItem(IDC_CHECK_SLIP_PAPER_SIZE))->SetCheck(FALSE);
// ASB_ASF_PAPER
((CButton*)GetDlgItem(IDC_CHECK_ASF_PAPER))->SetCheck(FALSE);
// ASB_STAMP_EXIST
((CButton*)GetDlgItem(IDC_CHECK_STAMP_EXIST))->SetCheck(FALSE);
// ASB_WAIT_INSERT

3-54 Programming guide Rev.D

((CButton*)GetDlgItem(IDC_CHECK_WAIT_INSERT))->SetCheck(FALSE);
// ASB_FRANKING_SENSOR
((CButton*)GetDlgItem(IDC_CHECK_FRANKING_SENSOR))->SetCheck(FALSE);

}else{
// Not ASB_NO_RESPONSE
// ASB_NO_RESPONSE
((CButton*)GetDlgItem(IDC_CHECK_NO_RESPONSE))->SetCheck(FALSE);
// ASB_OFF_LINE
((CButton*)GetDlgItem(IDC_CHECK_OFF_LINE))->

SetCheck(GetEnable(dwStatus & ASB_OFF_LINE));
// ASB_COVER_OPEN
((CButton*)GetDlgItem(IDC_CHECK_COVER_OPEN))->

SetCheck(GetEnable(dwStatus & ASB_COVER_OPEN));
// ASB_WAIT_PEPRT_EJECT
((CButton*)GetDlgItem(IDC_CHECK_WAIT_PEPRT_EJECT))->

SetCheck(GetEnable(dwStatus & ASB_WAIT_PEPRT_EJECT));
// ASB_MECHANICAL_ERR
((CButton*)GetDlgItem(IDC_CHECK_MECHANICAL_ERR))->

SetCheck(GetEnable(dwStatus & ASB_MECHANICAL_ERR));
// ASB_UNRECOVER_ERR
((CButton*)GetDlgItem(IDC_CHECK_UNRECOVER_ERR))->

SetCheck(GetEnable(dwStatus & ASB_UNRECOVER_ERR));
// ASB_PAPER_INTERMEDIATE
((CButton*)GetDlgItem(IDC_CHECK_PAPER_INTERMEDIATE))->

SetCheck(!GetEnable(dwStatus & ASB_PAPER_INTERMEDIATE));
// ASB_MAIN_NEAR_FULL
((CButton*)GetDlgItem(IDC_CHECK_MAIN_NEAR_FULL))->

SetCheck(!GetEnable(dwStatus & ASB_MAIN_NEAR_FULL));
// ASB_EJECT_SENSOR_NO_PAPER
((CButton*)GetDlgItem(IDC_CHECK_EJECT_SENSOR_NO_PAPER))->

SetCheck(!GetEnable(dwStatus & ASB_EJECT_SENSOR_NO_PAPER));
// ASB_SUB_NEAR_FULL
((CButton*)GetDlgItem(IDC_CHECK_SUB_NEAR_FULL))->

SetCheck(!GetEnable(dwStatus & ASB_SUB_NEAR_FULL));
// ASB_SLIP_PAPER_SIZE
((CButton*)GetDlgItem(IDC_CHECK_SLIP_PAPER_SIZE))->

SetCheck(!GetEnable(dwStatus & ASB_SLIP_PAPER_SIZE));
// ASB_ASF_PAPER
((CButton*)GetDlgItem(IDC_CHECK_ASF_PAPER))->

SetCheck(!GetEnable(dwStatus & ASB_ASF_PAPER));
// ASB_STAMP_EXIST
((CButton*)GetDlgItem(IDC_CHECK_STAMP_EXIST))->

SetCheck(GetEnable(dwStatus & ASB_STAMP_EXIST));
// ASB_WAIT_INSERT
((CButton*)GetDlgItem(IDC_CHECK_WAIT_INSERT))->

SetCheck(GetEnable(dwStatus & ASB_WAIT_INSERT));
// ASB_FRANKING_SENSOR
((CButton*)GetDlgItem(IDC_CHECK_FRANKING_SENSOR))->

SetCheck(!GetEnable(dwStatus & ASB_FRANKING_SENSOR));
}

}

Rev.D Programming guide 3-55

TM-S1000 API for EMEA Reference Guide

Step 7-3. Error handling

Errors that occur in the reading process are handled within the CALLBACK function of the
reading process. The sample program executes the process of pocket near full and paper jam
error. For other error handling, see the sub status of the CALLBACK function of reading process
(See “BiSCNMICRFunctionContinuously” on page 4-58) or device status (See “Device Status”
on page 4-1).

Pocket near full

In the sample program, a pocket near full is handled in the following steps.

1. Confirms the status of MF_CHECKPAPER_PROCESS_DONE with the CALLBACK
function.

2. Executes BiGetStatus to obtain the device status. The device status returns to the second
parameter (lpStatus) of BiGetStatus.

BiGetStatus (m_iHandle, lpStatus)

3. Confirms the pocket near full with the obtained device status (lpStatus). For details on
Device status, see "Device Status" on page 4-1.

4. In case of the pocket near full, notifies users. In the sample program, displays a message
or beeps the buzzer (BiRingBuzzer) to notify users of the pocket near full.

Programming code

APIUsage.cpp CAPIUsage::ScanStatus()

if(wMainStatus == MF_CHECKPAPER_PROCESS_DONE){
DWORD dwStatus = GetStatus();
if(!m_bNearFullMsg){

// Near full error
if(!(dwStatus & ASB_MAIN_NEAR_FULL) || !(dwStatus & ASB_SUB_NEAR_FULL)){

m_bNearFullMsg = TRUE;
pDlg->SetWindowText("TM-S1000SampleStep7 - ***** NearFull *****");
BiRingBuzzer(m_iHandle, MF_BUZZER_TONE_HIGH, 3, 1, 0);

}
}else{

// No Near full error
if((dwStatus & ASB_MAIN_NEAR_FULL) && (dwStatus & ASB_SUB_NEAR_FULL)){

m_bNearFullMsg = FALSE;
pDlg->SetWindowText("TM-S1000SampleStep7");

}
}

}

3-56 Programming guide Rev.D

Paper jam error

In the sample program, the following paper jam errors are handled.

• When a paper jam error occurs and reading process ends.

• When a paper jam error occurs and reading process continues.

For the handling timing of the paper jam error, see "9. CALLBACK process (paper jam error
occurred)" on page 3-6.

❏ Error handling when a paper jam error occurs and reading process ends

1. Confirms the status of MF_FUNCTION_DONE with the CALLBACK function to
confirm that the reading process has ended.

2. With the sub status (wSubStatus) of the CALLBACK function, confirms that the reading
process has ended normally. For details, see "MF_BASE.iRet" on page 4-62.

3. If ERR_PAPER_JAM is confirmed for the sub status, a paper jam error has occurred.
Displays a message to invoke users to remove the paper in the paper path.

4. After confirming that the paper in the paper path has been removed, call BiCancelError
to cancel the error.

BiCancelError (m_iHandle)

Programming code

APIUsage.cpp CAPIUsage::ScanStatus()

if(wMainStatus == MF_FUNCTION_DONE){
::SetEvent(m_hScanEvent);
if((short)wSubStatus == ERR_PAPER_JAM){

// Display the prompt "Remove the paper".
::MessageBox(pDlg->m_hWnd, "Remove the paper", "MECHANICAL ERROR",

MB_OK);
// Cancel mechanical error
BiCancelError(m_iHandle);

}else if(wSubStatus != SUCCESS){
::MessageBox(pDlg->m_hWnd, GetResultString((short)wSubStatus), "Error", 0);

}
}

Rev.D Programming guide 3-57

TM-S1000 API for EMEA Reference Guide

❏ Error handling when a paper jam error occurs and reading process continues

Note:
Set MF_RESULT_PARTIAL for bResultPartialData of the MF_PROCESS structure. If the reading
process does not continue, set MF_RESULT_NONE. In that case, a paper jam error is handled with
the former method.

1. Confirms the status of MF_ERROR_OCCURED with the CALLBACK function when an
error occurs.

2. With the sub status (wSubStatus) of the CALLBACK function, confirms the error
content. For details, see "Processing status list" on page 4-65.

3. If ERR_PAPER_JAM is confirmed for the sub status, a paper jam error has occurred.
Displays a message to inform users of the paper jam. The reading process continues.

4. After that, confirms the status of MF_FUNCTION_DONE with the CALLBACK function
to confirm that the reading process has ended.

5. Confirms ERR_PAPER_JAM for the sub status of the CALLBACK function and displays
a message to invoke users to remove the paper in the paper path.

6. After confirming that the paper in the paper path has been removed, call BiCancelError
to cancel the error.

BiCancelError (m_iHandle)

Programming code

APIUsage.cpp CAPIUsage::ScanStatus()

if(wMainStatus == MF_ERROR_OCCURED){
m_wErrorOccured = wSubStatus;

}

if(wMainStatus == MF_FUNCTION_DONE){
::SetEvent(m_hScanEvent);
if((short)wSubStatus == ERR_PAPER_JAM){

// Display the prompt "Remove the paper".
::MessageBox(pDlg->m_hWnd, "Remove the paper", "MECHANICAL ERROR",

MB_OK);
// Cancel mechanical error
BiCancelError(m_iHandle);

}else if(wSubStatus != SUCCESS){
::MessageBox(pDlg->m_hWnd, GetResultString((short)wSubStatus), "Error", 0);

}
}

Conf.cpp CConf::OnInitDialog()

SetWindowText(((CTMS1000SampleDlg*)theApp.m_pMainWnd)->m_api.GetErrorOccured());

3-58 Programming guide Rev.D

APIUsage.cpp LPCTSTR CAPIUsage::GetErrorOccured()

LPCTSTR CAPIUsage::GetErrorOccured()
{

return GetResultString((short)m_wErrorOccured);
}

APIUsage.h static LPCTSTR GetResultString(int iResultCode)

static LPCTSTR GetResultString(int iResultCode) {
switch(iResultCode) {

case SUCCESS:
return _T("SUCCESS");

case ERR_TYPE:
return _T("ERR_TYPE");

case ERR_OPENED:
return _T("ERR_OPENED");

case ERR_NO_PRINTER:
return _T("ERR_NO_PRINTER");

case ERR_NO_TARGET:
return _T("ERR_NO_TARGET");

case ERR_NO_MEMORY:
return _T("ERR_NO_MEMORY");

case ERR_HANDLE:
return _T("ERR_HANDLE");

case ERR_TIMEOUT:
return _T("ERR_TIMEOUT");

case ERR_ACCESS:
return _T("ERR_ACCESS");

case ERR_PARAM:
return _T("ERR_PARAM");

case ERR_NOT_SUPPORT:
return _T("ERR_NOT_SUPPORT");

case ERR_OFFLINE:
return _T("ERR_OFFLINE");

case ERR_NOT_EPSON:
return _T("ERR_NOT_EPSON");

case ERR_WITHOUT_CB:
return _T("ERR_WITHOUT_CB");

case ERR_BUFFER_OVER_FLOW:
return _T("ERR_BUFFER_OVER_FLOW");

case ERR_REGISTRY:
return _T("ERR_REGISTRY");

case ERR_ENABLE:
return _T("ERR_ENABLE");

case ERR_DISK_FULL:
return _T("ERR_DISK_FULL");

case ERR_NO_IMAGE:
return _T("ERR_NO_IMAGE");

case ERR_ENTRY_OVER:
return _T("ERR_ENTRY_OVER");

case ERR_CROPAREAID:
return _T("ERR_CROPAREAID");

case ERR_EXIST:
return _T("ERR_EXIST");

case ERR_NOT_FOUND:
return _T("ERR_NOT_FOUND");

Rev.D Programming guide 3-59

TM-S1000 API for EMEA Reference Guide

case ERR_IMAGE_FILEOPEN:
return _T("ERR_IMAGE_FILEOPEN");

case ERR_IMAGE_UNKNOWNFORMAT:
return _T("ERR_IMAGE_UNKNOWNFORMAT");

case ERR_IMAGE_FAILED:
return _T("ERR_IMAGE_FAILED");

case ERR_WORKAREA_NO_MEMORY:
return _T("ERR_WORKAREA_NO_MEMORY");

case ERR_WORKAREA_UNKNOWNFORMAT:
return _T("ERR_WORKAREA_UNKNOWNFORMAT");

case ERR_WORKAREA_FAILED:
return _T("ERR_WORKAREA_FAILED");

case ERR_IMAGE_FILEREAD:
return _T("ERR_IMAGE_FILEREAD");

case ERR_PAPERINSERT_TIMEOUT:
return _T("ERR_PAPERINSERT_TIMEOUT");

case ERR_EXEC_FUNCTION:
return _T("ERR_EXEC_FUNCTION");

case ERR_EXEC_MICR:
return _T("ERR_EXEC_MICR");

case ERR_EXEC_SCAN:
return _T("ERR_EXEC_SCAN");

case ERR_SS_NOT_EXIST:
return _T("ERR_SS_NOT_EXIST");

case ERR_SPL_NOT_EXIST:
return _T("ERR_SPL_NOT_EXIST");

case ERR_SPL_PAUSED:
return _T("ERR_SPL_PAUSED");

case ERR_RESET:
return _T("ERR_RESET");

case ERR_THREAD:
return _T("ERR_THREAD");

case ERR_ABORT:
return _T("ERR_ABORT");

case ERR_MICR:
return _T("ERR_MICR");

case ERR_SCAN:
return _T("ERR_SCAN");

case ERR_LINE_OVERFLOW:
return _T("ERR_LINE_OVERFLOW");

case ERR_NOT_EXEC:
return _T("ERR_NOT_EXEC");

case ERR_SIZE:
return _T("ERR_SIZE");

case ERR_PAPER_PILED:
return _T("ERR_PAPER_PILED");

case ERR_PAPER_JAM:
return _T("ERR_PAPER_JAM");

case ERR_COVER_OPEN:
return _T("ERR_COVER_OPEN");

case ERR_MICR_NODATA:
return _T("ERR_MICR_NODATA");

case ERR_MICR_BADDATA:
return _T("ERR_MICR_BADDATA");

3-60 Programming guide Rev.D

case ERR_MICR_PARSE:
return _T("ERR_MICR_PARSE");

case ERR_MICR_NOISE:
return _T("ERR_MICR_NOISE");

case ERR_SCN_COMPRESS:
return _T("ERR_SCN_COMPRESS");

case ERR_PAPER_EXIST:
return _T("ERR_PAPER_EXIST");

case ERR_PAPER_INSERT:
return _T("ERR_PAPER_INSERT");

case ERR_EXEC_SCAN_CHECK_CONTINUOUS:
return _T("ERR_EXEC_SCAN_CHECK_CONTINUOUS");

case ERR_EXEC_SCAN_CHECK_ONEBYONE:
return _T("ERR_EXEC_SCAN_CHECK_ONEBYONE");

case ERR_EXEC_SCAN_IDCARD:
return _T("ERR_EXEC_SCAN_IDCARD");

case ERR_EXEC_PRINT_ROLLPAPER:
return _T("ERR_EXEC_PRINT_ROLLPAPER");

case ERR_EXEC_PRINT_VALIDATION:
return _T("ERR_EXEC_PRINT_VALIDATION");

}
static CString strResult;
strResult.Format("%d", iResultCode);
return strResult;

}

Step 7-5. Cleaning the MICR mechanism

Load a cleaning sheet in the ASF, and then call BiMICRCleaning to clean the MICR mechanism.
(For the cleaning sheet, see the “TM-S1000 User’s Manual” or the “TM-S1000 Technical
Reference Guide.”)

nErr= BiMICRCleaning (m_iHandle)

Programming code
APIUsage.cpp CAPIUsage::Cleaning()

CheckResponse(BiMICRCleaning(m_iHandle));

Rev.D Programming guide 3-61

TM-S1000 API for EMEA Reference Guide

Step 8 Decoding a barcode, confirming the IQA and Waterfall process

In addition to Step 7, describes how to decode a barcode, how to confirm the IQA, and how to
process Waterfall.

Process before use of the device (same as Step 7)

Setting electric endorsement (fixed data) (same as Step 3)

Setting the MICR font to read (same as Step 5)

Setting the process when a reading error occurs (same as Step 4)

Confirming the Device status (same as Step 7)
(Device status CALLBACK process)

Step8-1. Setting the IQA process

Obtaining initial values of the MF_IQA structure
BiSCNMICRFunctionContinuously
BiSCNMICRFunctionPostPrint

Setting the values

BiSCNMICRFunctionContinuously
BiSCNMICRFunctionPostPrint

Changing settings of the MF_IQA structure members

3-62 Programming guide Rev.D

Step8-3. Setting the Waterfall process

Step8-2. Setting the barcode decode

Obtaining initial values of the MF_BARCODE structure
BiSCNMICRFunctionContinuously
BiSCNMICRFunctionPostPrint

Setting the values

BiSCNMICRFunctionContinuously
BiSCNMICRFunctionPostPrint

Changing settings of the MF_BARCODE structure members

Reading process (same as Step 3)

Obtaining the OCR-A/B font reading result (same as Step 6)

Processing method: Continuous reading/one-by-one reading

Obtaining/displaying/storing read data (CALLBACK process)

Obtaining/Displaying MICR data (same as Step 2)

Pasting electric endorsement (same as Step 3)

Step 8-4. Obtaining/Displaying the result of IQA process

Structure: MF_IQA_RESULT
BiGetIQAResult

Rev.D Programming guide 3-63

TM-S1000 API for EMEA Reference Guide

Process to end use of the device (same as Step 1)

Error handling process (same as Step 7)
(CALLBACK process)

Storing read data (same as Step 5)

Setting image quality (same as Step 5)

Processing method: Continuous reading/one-by-one reading

 Obtaining/displaying/storing read data (CALLBACK process)

Obtaing/Displaying image data (same as Step 2)

Process in the confirmation mode (same as Step 4)

Step 8-5. Obtaining/Displaying the result of Barcode decode

Structure: MF_BARCODE
BiGetBarcodeData

3-64 Programming guide Rev.D

Step 8-1. Setting the IQA process

Set items of IQA analysis and operation when IQA error occurs. For details of setting items, see
"MF_BARCODE structure" on page 3-11.

Setting MF_IQA

Set the members of MF_IQA structure with BiSCNMICRFunctionXXXX before reading is
processed. After setting, the obtained image data is analyzed and processed according to the
analysis result.

• Calling initial values of the MF_IQA

• Changing values of members if necessary

• Setting values of the MF_IQA structure

1. Specify the memory address of the MF_IQA structure for the second parameter and
MF_GET_IQA_DEFAULT for the third parameter of BiSCNMICRFunctionXXXX to call
initial values of the MF_IQA structure.

nErr= BiSCNMICRFunctionContinuously (m_iHandle , lpvStruct, MF_GET_IQA_DEFAULT)

Note:
Use BiSCNMICRFunctionPostPrint when the process method is one-by-one reading.

2. Change the default values of members of the MF_IQA structure if necessary.
For details of the members of MF_IQA structure and setting values, see "MF_IQA" on page
4-165.

• Execution of the IQA process (bErrorSelect)

• Ejection pocket of a document when IQA error occurs (bErrorEject)

• Franking process when IQA error occurs (bStamp)

• Continuation of reading process when IQA error occurs (bCancel;)

bErrorSelect Description

MF_ERROR_SELECT_NODETECT (0) Does not execute the IQA process.

MF_ERROR_SELECT_DETECT (1) Executes the IQA process.

bErrorEject Description

MF_EJECT_MAIN_POCKET (0x22) Ejects into the main pocket.

MF_EJECT_SUB_POCKET (0x24) Ejects into the sub pocket.

bStamp Description

MF_STAMP_DISABLE (0) Does not perform franking.

MF_STAMP_ENABLE (1) Performs franking.

bCancel; Description

MF_CANCEL_DISABLE (0) Continues reading process.

MF_CANCEL_ENABLE (1) Cancels reading process.

Rev.D Programming guide 3-65

TM-S1000 API for EMEA Reference Guide

3. Specify the memory address of the MF_IQA structure for the second parameter and
MF_SET_IQA_PARAM for the third parameter of the BiSCNMICRFunctionXXXX to set the
operation.

nErr= BiSCNMICRFunctionContinuously (m_iHandle , lpvStruct , MF_SET_IQA_PARAM)

Note:
Use BiSCNMICRFunctionPostPrint when the process method is one-by-one reading.

Programming code

APIUsage.cpp CAPIUsage::ConfigureMultiple()

APIUsage.cpp CAPIUsage::ConfigureSingle()

m_tIqa.iSize = sizeof(MF_IQA);
m_tIqa.iVersion = MF_IQA_VERSION;

CheckResponse(BiSCNMICRFunctionContinuously(m_iHandle, &m_tIqa, MF_GET_IQA_DEFAULT));
SetIqaStruct();
CheckResponse(BiSCNMICRFunctionContinuously(m_iHandle, &m_tIqa, MF_SET_IQA_PARAM));

APIUsage.cpp CAPIUsage::SetIqaStruct()

m_tIqa.bErrorSelect = (BYTE)m_pProperties->GetValueDefFalse(IQA_DETECT);
m_tIqa.bErrorEject = ChangeEject(m_pProperties->GetValueDefFalse(IQA_EJECT));
m_tIqa.bStamp = (BYTE)m_pProperties->GetValueDefFalse(IQA_STAMP);
m_tIqa.bCancel = (BYTE)m_pProperties->GetValueDefFalse(IQA_CANCEL);

if(m_pProperties->GetValueDefFalse(IQA_GRAYSCALE))
{

m_tIqa.bColorDepth = EPS_BI_SCN_8BIT;
m_tIqa.bImageFormat = EPS_BI_SCN_JPEGNORMAL;

}
else
{

m_tIqa.bColorDepth = EPS_BI_SCN_1BIT;
m_tIqa.bImageFormat = EPS_BI_SCN_TIFF;

}

if(m_tIqa.bErrorSelect == MF_ERROR_SELECT_DETECT) {
m_tIqa.bUndersize = MF_IQA_TEST_ENABLE;
m_tIqa.bOversize = MF_IQA_TEST_ENABLE;
m_tIqa.bMincompressed = MF_IQA_TEST_ENABLE;
m_tIqa.bMaxcompressed = MF_IQA_TEST_ENABLE;
m_tIqa.bFront_rear = MF_IQA_TEST_ENABLE;
m_tIqa.bToolight = MF_IQA_TEST_ENABLE;
m_tIqa.bToodark = MF_IQA_TEST_ENABLE;
m_tIqa.bStreaks = MF_IQA_TEST_ENABLE;
m_tIqa.bNoise = MF_IQA_TEST_ENABLE;
m_tIqa.bFocus = MF_IQA_TEST_ENABLE;
m_tIqa.bCorners = MF_IQA_TEST_ENABLE;
m_tIqa.bEdges = MF_IQA_TEST_ENABLE;
m_tIqa.bFraming = MF_IQA_TEST_ENABLE;
m_tIqa.bSkew = MF_IQA_TEST_ENABLE;
m_tIqa.bCarbon = MF_IQA_TEST_ENABLE;
m_tIqa.bPiggyback = MF_IQA_TEST_ENABLE;

}

3-66 Programming guide Rev.D

Step 8-2. Setting the barcode decode

Set the barcode decode process and behavior at barcode decode error.

Set the value to the member of MF_BARCODE structure with BiSCNMICRFunctionXXXX
before reading is processed. After setting, the setting of the barcode decode process can be
specified.

• Calling initial values of the MF_BARCODE structure

• Changing values of members if necessary

• Setting values of the MF_BARCODE structure

1. Specify the memory address of the MF_BARCODE structure for the second parameter and
MF_GET_BARCODE_FRONT_DEFAULT/ MF_GET_BARCODE_BACK_DEFAULT for the
third parameter of BiSCNMICRFunctionXXXX to call initial values of the MF_BARCODE
structure.

nErr= BiSCNMICRFunctionContinuously
 (m_iHandle , lpvStruct, MF_GET_BARCODE_FRONT_DEFAULT)

nErr= BiSCNMICRFunctionContinuously
 (m_iHandle , lpvStruct, MF_GET_BARCODE_BACK_DEFAULT)

Note:
Use BiSCNMICRFunctionPostPrint when the process method is one-by-one reading.

2. Change the default values of members of the MF_BARCODE structure if necessary.
For details of the members of MF_BARCODE structure and setting values, see
"MF_BARCODE" on page 4-176.

3. Specify the memory address of the MF_BARCODE structure for the second parameter and
MF_SET_BARCODE_FRONT_PARAM/MF_SET_BARCODE_BACK_PARAM for the third
parameter of the BiSCNMICRFunctionXXXX to set the operation.

nErr= BiSCNMICRFunctionContinuously
 (m_iHandle , lpvStruct, MF_SET_BARCODE_FRONT_PARAM)

nErr= BiSCNMICRFunctionContinuously
 (m_iHandle , lpvStruct, MF_SET_BARCODE_BACK_PARAM)

Note:
Use BiSCNMICRFunctionPostPrint when the process method is one-by-one reading.

Rev.D Programming guide 3-67

TM-S1000 API for EMEA Reference Guide

Programming code

APIUsage.cpp CAPIUsage::SetBarcodeStruct()

void CAPIUsage::SetBarcodeStruct()
{

m_tBarcodeFront.bErrorSelect = (BYTE)m_pProperties->GetValueDefFalse(BARCODE_FRONT_DETECT);
m_tBarcodeFront.bErrorEject = ChangeEject(m_pProperties-

>GetValueDefFalse(BARCODE_FRONT_EJECT));
m_tBarcodeFront.bStamp = (BYTE)m_pProperties->GetValueDefFalse(BARCODE_FRONT_STAMP);
m_tBarcodeFront.bCancel = (BYTE)m_pProperties->GetValueDefFalse(BARCODE_FRONT_CANCEL);

m_tBarcodeFront.stInfo[0].dwSymbolMask = (
MF_BARCODE_SYMBOL_CODABAR |
MF_BARCODE_SYMBOL_CODE128 |
MF_BARCODE_SYMBOL_CODE39 |
MF_BARCODE_SYMBOL_EAN_JAN |
MF_BARCODE_SYMBOL_ITF |
MF_BARCODE_SYMBOL_UPC_A |
MF_BARCODE_SYMBOL_UPC_E);

m_tBarcodeBack.bErrorSelect = (BYTE)m_pProperties->GetValueDefFalse(BARCODE_BACK_DETECT);
m_tBarcodeBack.bErrorEject = ChangeEject(m_pProperties-

>GetValueDefFalse(BARCODE_BACK_EJECT));
m_tBarcodeBack.bStamp = (BYTE)m_pProperties->GetValueDefFalse(BARCODE_BACK_STAMP);
m_tBarcodeBack.bCancel = (BYTE)m_pProperties->GetValueDefFalse(BARCODE_BACK_CANCEL);

m_tBarcodeBack.stInfo[0].dwSymbolMask = (
MF_BARCODE_SYMBOL_CODABAR |
MF_BARCODE_SYMBOL_CODE128 |
MF_BARCODE_SYMBOL_CODE39 |
MF_BARCODE_SYMBOL_EAN_JAN |
MF_BARCODE_SYMBOL_ITF |
MF_BARCODE_SYMBOL_UPC_A |
MF_BARCODE_SYMBOL_UPC_E);

}

3-68 Programming guide Rev.D

Step 8-3. Setting the Waterfall process

By calling BiSetWaterfallMode before reading is processed, the Waterfall process is performed.

Specify Waterfall mode for the second parameter of BiSetWaterfallMode.

nErr= BiSetWaterfallMode (m_iHandle, WATERFALL_MODE_MAIN_xxxx)

Note:
When the Waterfall process is enabled, the ejection pocket setting for MF_PROCESS structure is
disabled.

Programming code
APIUsage.cpp CAPIUsage::Configure()

BYTE byMode = WATERFALL_MODE_DISABLE;
if(m_pProperties->GetValueDefFalse(WATERFALL_ENABLE)) {

if(m_pProperties->GetValueDefFalse(WATERFALL_MODE) == WATERFALL_STANDARD) {
byMode = WATERFALL_MODE_STANDARD;

}
else {

byMode = WATERFALL_MODE_INHERIT_POCKET;
}

}
BiSetWaterfallMode(m_iHandle, byMode);

WATERFALL_MODE_MAIN_xxxx Description

WATERFALL_MODE_DISABLE (0) Disables the Waterfall process.

WATERFALL_MODE_STANDARD (1) Enables the Waterfall process.
Ejects to the main pocket when starting the reading process.
When the main pocket’s near full is detected, the ejection pocket
is switched to the sub pocket. When the sub pocket’s near full is
detected, the ejection pocket is switched to the main pocket.

WATERFALL_MODE_INHERIT_POCKET (2) Enables the Waterfall process.
Ejects to the ejection pocket of the previous reading process.
(For example, the previous ejection pocket is the sub pocket,
ejects to the sub pocket.)
When a pocket near full is detected, the ejection pocket is
switched to the other pocket. When a pocket near full has
already been detected when starting the reading process, the
ejection pocket is switched to the other pocket. The ejection
pocket, however, is not switched when the other pocket’s near
full has been detected.

Rev.D Programming guide 3-69

TM-S1000 API for EMEA Reference Guide

Step 8-4. Obtaining/Displaying the result of IQA process

By calling BiGetIQAResult after obtaining/saving image data, the result of IQA process
(MF_IQA_RESULT structure) can be obtained. For details of MF_IQA_RESULT structure, see
"MF_IQA" on page 4-165.

Obtain the result of IQA process by specifying the transaction ID for the second parameter of
BiGetIQAResult, the memory address of MF_IQA_RESULT structure for the third parameter.

nErr= BiGetIQAResult (m_iHandle, dwTransactionNumber, ptIqaResult)

Programming code

APIUsage.cpp CAPIUsage::ScanStatus

if(m_pProperties->GetValueDefFalse(IQA_DETECT)){
MF_IQA_RESULT stIqaResult;
stIqaResult.iSize = sizeof(MF_IQA_RESULT);
stIqaResult.iVersion = MF_IQARESULT_VERSION;
BiGetIqaResult(m_iHandle, dwTransactionNumber, &stIqaResult);
pDlg->m_IqaResultDlg.SetIqaResult(&stIqaResult);

}

IqaResultDlg.cpp CIqaResultDlg::SetIqaResult(LPMF_IQA_RESULT lpResult)

// CIqaResultDlg message handlers
void CIqaResultDlg::SetIqaResult(LPMF_IQA_RESULT lpResult)
{

DisplayResult(lpResult->stUnderSize.bResult, IDC_UNDER_SIZE_EDIT);
DisplayResult(lpResult->stOverSize.bResult, IDC_OVER_SIZE_EDIT);
DisplayResult(lpResult->stMinCompressedImageSize.bResult, IDC_MIN_COMP_EDIT);
DisplayResult(lpResult->stMaxCompressedImageSize.bResult, IDC_MAX_COMP_EDIT);
DisplayResult(lpResult->stFrontRearImageMismatch.bResult, IDC_MISMATCH_EDIT);
DisplayResult(lpResult->stImageTooLight.bResult, IDC_TOO_LIGHT_EDIT);
DisplayResult(lpResult->stImageTooDark.bResult, IDC_TOO_DARK_EDIT);
DisplayResult(lpResult->stHorizontalStreaksPresent.bResult, IDC_STREAKS_EDIT);
DisplayResult(lpResult->stExcessiveSpotNoise.bResult, IDC_NOISE_EDIT);
DisplayResult(lpResult->stImageOutOfFocus.bResult, IDC_FOCUS_EDIT);
DisplayResult(lpResult->stFoldedTornDocCorners.bResult, IDC_CORNERS_EDIT);
DisplayResult(lpResult->stFoldedTornDocEdges.bResult, IDC_EDGES_EDIT);
DisplayResult(lpResult->stDocFramingError.bResult, IDC_FRAM_EDIT);
DisplayResult(lpResult->stExcessiveDocSkew.bResult, IDC_SKEW_EDIT);
DisplayResult(lpResult->stCarbonStripDetection.bResult, IDC_STRIP_EDIT);
DisplayResult(lpResult->stPiggyBack.bResult, IDC_PIGGYBACK_EDIT);

}

3-70 Programming guide Rev.D

Step 8-5. Obtaining/Displaying the result of barcode decode (CALLBACK process)

Obtain and display the result of barcode decode with the CALLBACK function.

• Confirming data reception end

• Obtaining/Displaying the result of barcode decode

Confirming data reception end

Confirm the MF_DATARECEIVE_DONE status with the CALLBACK function to confirm data
reception end.

Obtaining/Displaying the result of barcode decode

Follow the steps below to obtain/display the result of barcode decode.

1. Specify the side to obtain for the second parameter of BiSCNSelectScanFace.
nErr= BiSCNSelectScanFace (m_iHandle , MF_SCAN_FACE_xxxx)

2. By specifying the transaction number for the second parameter and the memory address of
the MF_BARCODE structure for the third parameter of BiGetBardodeData, the result of the
barcode decode is obtained.

nErr = BiGetBarcodeData (m_iHandle , dwTransactionNumber , ptBarcode)

3. The result of barcode decode returns to lpData of the MF_BARCODE structure.

4. The result of barcode decode is obtained in the CALLBACK function and displayed on the
application.

Programming code

APIUsage.cpp CAPIUsage::ScanStatus()

DisplayBarcodeData(dwTransactionNumber);

APIUsage.cpp CAPIUsage::DisplayBarcodeData

void CAPIUsage::DisplayBarcodeData(DWORD dwTransactionNumber)
{

CTMS1000SampleDlg* pDlg = (CTMS1000SampleDlg*)theApp.m_pMainWnd;

CString strBarcodeData;
int iRet = SUCCESS;
BARCODE_DATA *pBarcodeData = NULL;
int nCount = 0;

if(m_pProperties->GetValueDefFalse(BARCODE_FRONT_DETECT))
{

// select front side
iRet = BiSCNSelectScanFace(m_iHandle, MF_SCAN_FACE_FRONT);

MF_SCAN_FACE_xxxx Description

MF_SCAN_FACE_FRONT (0) Selects the front side (default)

MF_SCAN_FACE_BACK (1) Selects the back side

Rev.D Programming guide 3-71

TM-S1000 API for EMEA Reference Guide

if(iRet == SUCCESS)
{

iRet = BiGetBarcodeData(m_iHandle, dwTransactionNumber, &m_tBarcodeFront);
}
if((iRet == SUCCESS) && (m_tBarcodeFront.lpData != NULL))
{

// convert string
pBarcodeData = (BARCODE_DATA*)m_tBarcodeFront.lpData;
for(nCount = 0; nCount < m_tBarcodeFront.bDataCount; nCount++)
{

strBarcodeData.Append((LPSTR)pBarcodeData[nCount].pData,
pBarcodeData[nCount].dwDataSize);

strBarcodeData.Append(" ");
::GlobalFree(pBarcodeData[nCount].pData);

}
strBarcodeData.Replace('\0', ' ');
::GlobalFree(m_tBarcodeFront.lpData);

}
if(m_tBarcodeFront.iRet != SUCCESS)
{

strBarcodeData += GetResultString(m_tBarcodeFront.iRet);
}

}
pDlg->SetBarcodeFrontString(strBarcodeData);
strBarcodeData.Empty();

if(m_pProperties->GetValueDefFalse(BARCODE_BACK_DETECT))
{

// select back side
iRet = BiSCNSelectScanFace(m_iHandle, MF_SCAN_FACE_BACK);
if(iRet == SUCCESS)
{

iRet = BiGetBarcodeData(m_iHandle, dwTransactionNumber, &m_tBarcodeBack);
}
if((iRet == SUCCESS) && (m_tBarcodeBack.lpData != NULL))
{

// convert string
pBarcodeData = (BARCODE_DATA*)m_tBarcodeBack.lpData;
for(nCount = 0; nCount < m_tBarcodeBack.bDataCount; nCount++)
{

strBarcodeData.Append((LPSTR)pBarcodeData[nCount].pData,
pBarcodeData[nCount].dwDataSize);

strBarcodeData.Append(" ");
::GlobalFree(pBarcodeData[nCount].pData);

}
strBarcodeData.Replace('\0', ' ');
::GlobalFree(m_tBarcodeBack.lpData);

}
if(m_tBarcodeBack.iRet != SUCCESS)
{

strBarcodeData += GetResultString(m_tBarcodeBack.iRet);
}

}
pDlg->SetBarcodeBackString(strBarcodeData);

}

3-72 Programming guide Rev.D

How to Use the Scanner Advanced Functions

When not using the scanner advanced functions

Scanned-in images are automatically edited and saved to the work area as shown below.

Using the scanner advanced functions

Application process flow

TM-S1000
Scanner

Front side

Back side

FrontA

Paper feed direction

DeSkew
AutoSize

Driver

Scanned-in images

FrontA
B
ackA

Fr
on
tA

B
ackA

BackA

Paper skew is automatically
adjusted, then the paper size
is automatically detected and
cropped.

Rotation

Scanned data in
work area*

Application

Scanned data

OCR data

ABCDE...

Rotational direction of
the Back is opposite
to that of Front

Fr
on
tA

*OCR fonts in the scanned data saved in the work area can be read separately
 by specifying the area in which the fonts are included.
 This can be carried out without using the scanner advanced functions.

1.Enabling the scanner advanced functions
BiESCNEnable

2.Opening the device
BiOpenMonPrinter

3.Scanner application

4.Device closing process

Specify the
BiESCNEnable

before opening the
device!

Embed desired
scanner advanced

functions.

Rev.D Programming guide 3-73

TM-S1000 API for EMEA Reference Guide

Editing scanned-in images

Images scanned by TM-S1000 can be edited using customer’s application and saved to the work
area.
The following settings are available with the scanner advanced functions.

Note:
There is no difference in scanning speed between using or not using the scanner advanced functions.

Functional
Classification Item API Settings

When not using
the advanced
functions Functions

Editing

Destination of
the edited data

BiESCNEnable Memory/File - Destination of edited
scanned data can be
specified in the work
area.
This must be specified
in the beginning of the
application whenever
using the advanced
functions.

AutoSize BiESCNSetAutoSize Enable/
Disabled

Enable Crops scanned-in
image into a check
sheet size by cropping
out unnecessary part
of the image.

Skew
adjustment

BiESCNSetDeSkew Enable/
Disable/Enable
when skew by
specified or
more degrees
is detected

Skew by 1.5
degrees or
more is
adjusted

Skew of the scanned
check sheet is
detected and
corrected.

Rotation BiESCNSetRotate Enable/
Disabled

Enable Front side is rotated
clockwise while back
side is rotated
counterclockwise.

3-74 Programming guide Rev.D

Cropping

Areas to be cropped from the image data saved to the work area can be specified in advance
using coordinates and can be saved.

Work area

CropImage save table

Cropping

File/Memory

(0,0) (Right,0)

(0,Bottom)

API that corresponds to
each function is provided.

BiESCNStoreImage

BiESCNEnable

Specifying coordinates
BiESCNDefineCropArea

Up to 256 areas can be specified.

Rev.D Reference 4-1

TM-S1000 API for EMEA Reference Guide

Chapter 4
Reference

This chapter describes the TM-S1000 API and syntax.

Note
The data type is described in C++.

Device information
Device Status

Macro Definitions ON/OFF Value Status Response

ASB_NO_RESPONSE ON 0x00000001 No Device response Check that the device is
powered on, and that the
cable is connected.
Check the specified
device name, and also the
computer port.

OFF 0x00000000 Device Responds -

ASB_OFF_LINE ON 0x00000008 Off-line Check the other Decice
Status to eliminate them as
a cause for the device
being offline.

OFF 0x00000000 On-line -

ASB_COVER_OPEN ON 0x00000020 Cover is open. Close the cover.

OFF 0x00000000 Cover is closed. -

ASB_WAIT_PEPRT_EJECT ON 0x00000100 There is a check paper in
the transport path.

Remove the paper as
described in the user's
manual.

OFF 0x00000000 - -

ASB_MECHANICAL_ERR ON 0x00000400 Recoverable Errors
generated
Refer to Technical
Reference Guide

Check the other Device
Status, eliminate the source
of any errors, and then
either power-on the
scanner again or issue an
error cancel
(BiCancelError) command.

OFF 0x00000000 No recoverable error. -

ASB_UNRECOVER_ERR ON 0x00002000 Unrecoverable Errors
generated
Refer to Technical

Reference Guide

Immediately turn off the
power to the device.

OFF 0x00000000 No unrecoverable error. -

ASB_PAPER_INTERMEDIATE ON 0x00010000 The intermediate sensor
senses no paper.

-

OFF 0x00000000 The intermediate sensor
senses that there is paper.

Remove the paper as
described in the user's
manual.

4-2 Reference Rev.D

Macro Definitions ON/OFF Value Status Response

ASB_MAIN_NEAR_FULL ON 0x00020000 The main pocket is not
nearly full.

-

OFF 0x00000000 The main pocket is nearly
full.

Remove the paper from
the main pocket.

ASB_EJECT_SENSOR_NO_PAPER ON 0x00040000 The eject sensor senses no
paper.

-

OFF 0x00000000 The eject sensor senses that
there is paper.

Remove the paper as
described in the user's
manual.

ASB_SUB_NEAR_FULL ON 0x00080000 The sub pocket is not nearly
full.

-

OFF 0x00000000 The sub pocket is nearly full. Remove the paper from
the sub-pocket.

ASB_SLIP_PAPER_SIZE ON 0x00200000 No check paper at the
paper length sensor.

-

OFF 0x00000000 Check paper at the paper
length sensor.

Remove the paper as
described in the user's
manual.

ASB_ASF_PAPER ON 0x00400000 There is no paper in the ASF. -

OFF 0x00000000 There is paper in the ASF. -

ASB_STAMP_EXIST ON 0x02000000 The franking cartridge is not
installed.

When ASB_STAMP_EXIST =
NO and the Franker is
enable, the application
needs to prompt a
warning.

OFF 0x00000000 The franking cartridge is
installed.

-

ASB_WAIT_INSERT ON 0x20000000 Waiting for paper. -

OFF 0x00000000 - -

ASB_FRANKING_SENSOR ON 0x40000000 The franking sensor senses
no paper.

-

OFF 0x00000000 The franking sensor senses
there is paper.

Remove the paper as
described in the user's
manual.

Rev.D Reference 4-3

TM-S1000 API for EMEA Reference Guide

Maintenance Counter

*1 The values set to 60 (3CH) and 61 (3DH) are the same. If you reset one of them, the other one is also reset.
*2 The values set to 188 (BCH) and 189 (BDH) are the same.

Type ID

Counter
Number
(read no)

Resetability Counter (readcounter) [Unit]

60 (3CH) *1 Resetable Magnetic text read count [No of times]

61 (3DH) *1 Resetable Check paper image read count [No of times]

70 (46H) Resetable Product operating time [Hours]

80 (50H) Resetable Hopper open/close count [No of times]

81 (51H) Resetable Franking count [No of times]

82 (52H) Resetable Pocket switching count [No of times]

188 (BCH) *2 Cumulative Magnetic text read count [No of times]

189 (BDH) *2 Cumulative Check paper image read count [No of times]

198 (C6H) Cumulative Product operating time [Hours]

208 (D0H) Cumulative Hopper open/close count [No of times]

209 (D1H) Cumulative Franking count [No of times]

210 (D2H) Cumulative Pocket switching count [No of times]

Bit ON/OFF Value Function

0 - 0x00 -

1 - 0x00 -

2 - 0x00 -

3 ON 0x08 MICR reader is installed. (Fixed to 1)

4 - 0x00 Fixed to 0

5 - 0x00 -

6 - 0x00 -

7 - 0x00 Fixed to 0

4-4 Reference Rev.D

Device ID

(A) Type ID (Device ID = 2)

(B) Type information (Device ID = 33)

Device ID
(Set to
prnID)

Type of Device ID Data to obtain

1 Product ID 1-byte data. Product ID is 111(6FH).

2 Type ID 1-byte data. See Table (A) for the data to obtain.

33 Type information (1) 2-byte data. See Table (B) for the data to obtain.

65 Version of firmware String data. The obtained data varies depending on the firmware
version.
Example: “1.00 ESC/POS”

66 Manufacture name String data. Default is “EPSON”.
Example: “EPSON”

67 Product name String data. The obtained data varies depending on the prodct.
Example: “TM-S1000”

68 Serial number String data. The obtained data varies depending on the device.
 Example: “DEKK000015”

112 Type information (2) 1-byte data. See Table (C) for data to obtain.

Bit ON/OFF Value Function

0 - 0x00 -

1 - 0x00 -

2 - 0x00 -

3 ON 0x08 MICR reader is installed. (Fixed to 1)

4 - 0x00 -

5 - 0x00 -

6 - 0x00 -

7 - 0x00 -

First byte

Bit ON/OFF Value Function

0 - 0x00 -

1 - 0x00 -

2 - 0x00 -

3 ON 0x08 MICR reader is installed. (Fixed to 1)

4 ON 0x10 Image reader is installed. (Fixed to 1)

5 - 0x00 -

6 - 0x40 Fixed to 1

7 - 0x00 Fixed to 0

Rev.D Reference 4-5

TM-S1000 API for EMEA Reference Guide

(C) Type information (Device ID = 112)

 Second byte

Bit ON/OFF Value Function

0 - 0x00 -

1 ON 0x02 Grayscale reading is supported. (Fixed to 1)

2 ON 0x04 Image reader is installed. (Fixed to 1)

3 ON 0x08 ASF is installed. (Fixed to 1)

4 - 0x00 -

5 - 0x00 -

6 - 0x40 Fixed to 1

7 - 0x00 Fixed to 0

Bit ON/OFF Value Function

0 - 0x00 -

1
Model (Refer to “Model” on page 4-5)

2

3 - 0x00 -

4 ON 0x10 Waterfall is supported.

OFF 0x00 Waterfall is unsupported.

5 OFF 0x00 2 pockets (Fixed to 0)

6 - 0x40 Fixed to 1

7 - 0x00 -

Model

Model 1Bit 2Bit

30 dpm OFF (0x00) OFF (0x00)

60 dpm ON (0x02) OFF (0x00)

90 dpm ON (0x02) ON (0x04)

4-6 Reference Rev.D

Offline Code (BiGetOfflineCode)

First Byte

Bit ON/OFF Value Status

0 ON 0x02 CPU execution error generated

OFF 0x00 CPU execution error not generated

1 ON 0x04 ROM error generated

OFF 0x00 ROM error not generated

2 - 0x00 fixed to 0

3 - 0x00 fixed to 0

4 - 0x00 fixed to 0

5 - 0x00 fixed to 0

6 - 0x40 fixed to 1

7 - 0x00 fixed to 0

Second Byte

Bit ON/OFF Value Status

0 ON 0x01 High voltage error generated

OFF 0x00 High voltage error not generated

1 ON 0x02 Low voltage error generated

OFF 0x00 Low voltage error not generated

2 - 0x00 fixed to 0

3 - 0x00 fixed to 0

4 - 0x00 fixed to 0

5 - 0x00 fixed to 0

6 - 0x40 fixed to 1

7 - 0x00 fixed to 0

Rev.D Reference 4-7

TM-S1000 API for EMEA Reference Guide

Third Byte

Bit ON/OFF Value Status

0 - 0x00 fixed to 0

1 - 0x00 fixed to 0

2 - 0x00 fixed to 0

3 - 0x00 fixed to 0

4 ON 0x04 CIS error generated

OFF 0x00 CIS error not generated

5 - 0x00 fixed to 0

6 - 0x40 fixed to 1

7 - 0x00 fixed to 0

Fourth Byte

Bit ON/OFF Value Status

0 - 0x00 fixed to 0

1 - 0x00 fixed to 0

2 - 0x00 fixed to 0

3 - 0x00 fixed to 0

4 - 0x00 fixed to 0

5 - 0x00 fixed to 0

6 - 0x40 fixed to 1

7 - 0x00 fixed to 0

Fifth Byte

Bit ON/OFF Value Status

0 - 0x00 fixed to 0

1 - 0x00 fixed to 0

2 - 0x00 fixed to 0

3 - 0x00 fixed to 0

4 - 0x00 fixed to 0

5 - 0x00 fixed to 0

6 - 0x40 fixed to 1

7 - 0x00 fixed to 0

4-8 Reference Rev.D

Offline Code (BiGetOfflineCodeByIndex)

First Byte (Recoverable Errors)

Bit ON/OFF Value Status

0 - 0x00 fixed to 0

1 ON 0x02 CPU execution error generated

OFF 0x00 CPU execution error not generated

2 ON 0x04 ROM error generated

OFF 0x00 ROM error not generated

3 - 0x00 fixed to 0

4 - 0x00 fixed to 0

5 - 0x00 fixed to 0

6 - 0x40 fixed to 1

7 - 0x00 fixed to 0

Second Byte (Unrecoverable Errors)

Bit ON/OFF Value Status

0 ON 0x01 High voltage error generated

OFF 0x00 High voltage error not generated

1 ON 0x02 Low voltage error generated

OFF 0x00 Low voltage error not generated

2 ON 0x04 CIS error generated

OFF 0x00 CIS error not generated

3 - 0x00 fixed to 0

4 - 0x00 fixed to 0

5 - 0x00 fixed to 0

6 - 0x40 fixed to 1

7 - 0x00 fixed to 1

Rev.D Reference 4-9

TM-S1000 API for EMEA Reference Guide

Third Byte (Recoverable Errors: mechanism position error)

Bit ON/OFF Value Status

0 ON 0x01 Hopper position error generated

OFF 0x00 Hopper position error not generate

1 ON 0x02 Stamp position error generated

OFF 0x00 Stamp position error not generated

2 ON 0x04 Switching plate position error
generated

OFF 0x00 Switching plate position error not
generated

3 - 0x00 fixed to 0

4 - 0x00 fixed to 0

5 - 0x00 fixed to 0

6 - 0x40 fixed to 1

7 - 0x00 fixed to 0

Fourth Byte (Recoverable Errors: paper jam error)

Bit ON/OFF Value Status

0 ON 0x01 Cut paper present error generated

OFF 0x00 Cut paper present error not
generated

1 ON 0x02 Cut-sheet ejection error generated

OFF 0x00 Cut-sheet ejection error not
generated

2 ON 0x04 Cut paper length error generated

OFF 0x00 Cut paper length error not
generated

3 ON 0x08 Cut paper transport error
generated

OFF 0x00 Cut paper transport error not
generated

4 - 0x00 fixed to 0

5 - 0x00 fixed to 0

6 - 0x40 fixed to 1

7 - 0x00 fixed to 0

4-10 Reference Rev.D

MICR Status

Fifth Byte (Recoverable Errors: continuous read error that detection setting is available)

Bit ON/OFF Value Status

0 ON 0x01 Cut paper double feed error
generated

OFF 0x00 Cut paper double feed error not
generated

1 ON 0x02 Cut paper insertion direction error
generated

OFF 0x00 Cut paper insertion direction error
not generated

2 ON 0x04 External noise error generated

OFF 0x00 External noise error not generated

3 ON 0x08 Read error generated as a result of
command indication

OFF 0x00 Read error not generated as a result
of command indication

4 - 0x00 fixed to 0

5 - 0x00 fixed to 0

6 - 0x40 fixed to 0

7 - 0x00 fixed to 0

Bit ON/OFF Value Status

0 - 0x00 fixed to 0

1 - 0x02 fixed to 1

2 ON 0x04 MICR function non-selection

OFF 0x00 MICR function selection

3 ON 0x08 Waiting for check sheet/cleaning sheet
insertion

OFF 0x00 -

4 - 0x10 fixed to 1

5 ON 0x20 TOF sensor senses no paper

OFF 0x00 TOF sensor senses that there is paper

6 ON 0x40 BOF sensor senses no paper

OFF 0x00 BOF sensor senses that there is paper

7 - 0x00 fixed to 0

Rev.D Reference 4-11

TM-S1000 API for EMEA Reference Guide

TM-S1000 API Error Handling

The following table shows how TM-S1000 API handles each of the error return values.

Constant Description Response

SUCCESS Success -

ERR_TYPE nType parameter error A constant value that is not defined is used
in the header. Use a constant value that is
defined.

ERR_OPENED The specified device has already
been opened

The port is already used by the other
application. Close the application.

ERR_NO_PRINTER The specified device driver does not
exist

The power of the device is off, or the host is
not connected. Check the device status.

ERR_NO_TARGET An unsupported device was
specified
(The device’s power is not On or the
cable connections are faulty, etc.)

The current USB driver is not supported.
Install the correct driver.

ERR_NO_MEMORY Memory is insufficient There is insufficient memory for running the
driver. Close other applications or add
more memory.

ERR_HANDLE The handle value that specifies the
device is incorrect

The handle value is incorrect. Check if the
same handle value is used as the one when
BiOpenMonPrinter is correctly finished.

ERR_TIMEOUT A time out error occurred API is not finished correctly. Check the
device status.

ERR_ACCESS Reading/writing with the device is
not possible (printing in progress)

API is not finished correctly. Check the
device status.

ERR_PARAM Parameter error This is a parameter error. Check if the set
value is correct.

ERR_NOT_SUPPORT Unsupported This API function is not available. When
using the scanner advanced function API,
confirm that BiESCNEnable is called at the
beginning.

ERR_OFFLINE It was opened in the offline state, so
it cannot be used until the online
state is recovered.

The device has gone offline. Check the
device status.

ERR_NOT_EPSON Cannot be used (device not EPSON) The current device is not EPSON product.
Use an EPSON’s device.

ERR_WITHOUT_CB BiSCNMICRFunctionPostPrint/
BiSCNMICRFunctionContinuously has
not been run

• The callback destination is not registered
on the driver. Call either
BiSCNMICRSetStatusBackFunction or
BiSCNMICRSetStatusBackWnd

• The scanner is not in operation. Call it
while the scanner is scanning.

ERR_BUFFER_OVER_FLOW Buffer overflow error The memory is insufficient for the required
task. Add more memory.

ERR_ENABLE Cannot be used because
BiOpenMonPrinter is called

BiOpenMonPrinter is already called.
Execute BiCloseMonPrinter, and then recall
BiOpenMonPrinter.

ERR_DISK_FULL There is insufficient free space on the
disk

Disk capacity is insufficient. Review the
operating environment.

ERR_NO_IMAGE The image data does not exist No image files are found. Check if the
image file exists in the specified destination.

4-12 Reference Rev.D

ERR_CROPAREAID The specified Crop Area does not
exist

DefineCropArea is not configured. Set
DefineCropArea, and then recall it.

ERR_EXIST The specified data has already been
saved

The parameter has already been
registered. Change the parameter or call
BiESCNClearImage.

ERR_NOT_FOUND No data error • No data exist in the corresponding
transaction number. Confirm that the
transaction number is correct.

• It is not registered yet. Check the
parameter.

• No corresponding module is found. Re-
install the driver.

ERR_IMAGE_FILEOPEN Open failure Specified image file cannot be opened.
Check if the other application is using it.

ERR_IMAGE_UNKNOWNF
ORMAT

Format injustice File format is incorrect or not supported.
Check if the image can be opened with
the other application.

ERR_IMAGE_FAILED Image data creation failed Saving image file failed. Review the
operating environment.

ERR_IMAGE_FILEREAD Read of the image data file failed Reading image file failed. Check if the file
exists in the specified destination.

ERR_PAPERINSERT_TIMEO
UT

Paper insertion time exceeded Inserting the check sheet failed. Check if
the check paper is correctly placed on ASF.

ERR_EXEC_FUNCTION Cannot be used because the other
API is being executed

The other API is in use. Retry after the other
API is finished.

ERR_RESET Cannot be used because the
device is being reset

The device is being reset. Retry after the
reset is finished.

ERR_ABORT Canceled by
BiSCNMICRCancelFunction

Reading operation is canceled. Determine
whether to execute the operation again or
not.

Near full is detected Notified when
MF_PROCESS.bNearFullSelect is set to other
than MF_NEARFULL_PERMIT and Near full is
detected during scanning.

ERR_MICR Printer failed in MICR reading MICR data is not read. Read it again.

ERR_SCAN Printer failed in image scanning Image data is not read. Read it again.

ERR_NOT_EXEC Process not being executed Reading operation is not executed. Read it
again.

ERR_SIZE Size excess error BiSetPrintSize is not called, or the value is not
valid. Execute it again after calling
BiSetPrintSize.

ERR_PAPER_PILED Paper pilling error Double feed error is detected. Determine
whether to execute the reading operation
again or not.

ERR_PAPER_JAM Paper jam has occurred Paper jam error occurs. Remove the
jammed paper and call BiCancelError.

ERR_COVER_OPEN Cover open error Path cover is opened. Close the cover.

ERR_MICR_NODATA MICR data is not existing MICR data does not exist. Determine
whether to execute the reading operation
again or not.

Constant Description Response

Rev.D Reference 4-13

TM-S1000 API for EMEA Reference Guide

ERR_MICR_BADDATA MICR data is not able to recognize MICR data is incorrect. Determine whether
to execute the reading operation again or
not.

ERR_MICR_PARSE MICR data can not be parsed Parsing operation of MICR data failed.
Determine whether to execute the reading
operation again or not.

ERR_MICR_NOISE Noise error has occurred during
MICR reading

External noise error is detected. Review the
installation site, and determine whether to
execute the reading operation again or
not.

ERR_PAPER_EXIST API can not be execute because
there is a paper on the path

Paper exists on the paper feed path.
Remove the paper.

ERR_PAPER_INSERT Paper insertion error Paper insertion error is detected. Check if
the insertion direction is correct, and judge
whether to execute the reading operation
again or not.

ERR_LESS_CHECKS The number of documents specified
by BiSetNumberOfDocuments
cannot be read.

Change the specified number of
documents, or increase the number of
documents to be read.

ERR_SCAN_IQA Error has detected in the IQA test. Call BiGetIQAResult to confirm the test
result, and determine if reading should be
tried again.

ERR_BARCODE_NODATA Barcode cannot be detected. • Check if the specifications of front/back
side are correct.

• Check if the specified barcode type and
the decode direction are correct.

• Read image data may be low in quality.
Read it again then.

Constant Description Response

4-14 Reference Rev.D

BiOpenMonPrinter

This opens the device for which the status is being monitored. Values acquired by this API are
used as nHandle for other APIs.

Syntax

int BiOpenMonPrinter (int nType, LPSTR pName)

Argument

nType: This specifies the type of name specified in pName. One of the following two types is
specified. This is an INT type.

pName: This specifies the device that is opened. The specification is as follows, depending on
the nType value. If the nType is TYPE_PORT, it specifies the port name to which the
device is connected.
(Example: "USB2"...)
If the nType is TYPE_PRINTER, the device name is specified.
(Example: "TM-S1000U", ...)
This is an LPSTR type.

Return value

Explanation

Before using an API function other than this function, it is necessary that this function be
executed first.
The handle value obtained is valid only in the same thread.

Note

For Windows 2000, Windows XP, Windows Vista or newer Windows versions., if the common
memory has failed to be secured because of the user authority, ERR_NO_PRINTER or
ERR_NO_MEMORY is returned.

Constant Value Description

TYPE_PORT 1 Specify the port name in pName.

TYPE_PRINTER 2 Specify the device name in pName.

Value Constant Description

0 SUCCESS Success

-10 ERR_TYPE nType parameter error

-20 ERR_OPENED The specified device has already been opened

-30 ERR_NO_PRINTER The specified device driver does not exist

-40 ERR_NO_TARGET An unsupported device was specified
(The device’s power is not On or the cable connections are faulty, etc.)

-50 ERR_NO_MEMORY Memory is insufficient

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

-90 ERR_PARAM Parameter error

-120 ERR_NOT_EPSON Cannot be used (device not EPSON)

Rev.D Reference 4-15

TM-S1000 API for EMEA Reference Guide

BiSetMonInterval

API that is compatible with the TM-J9000 API. No operation is possible with the TM-S1000 API.

Syntax

int BiSetMonInterval (int nHandle, WORD wNoPrnInterval, WORD wPrnInterval)

Argument

nHandle: Specifies the handle. This is an INT type.

wNoPrnInterval: Not used

wPrnInterval: Spooler status monitoring interval is set in units of msec.
This is a WORD type.

Return value

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-16 Reference Rev.D

BiGetStatus

Acquires the current device status. The device status is set to the lpStatus.

Syntax

int BiGetStatus (int nHandle, LPDWORD lpStatus)

Argument

nHandle: Specifies the handle. This is an INT type.

lpStatus: The current status of the device is set. This is an LPDWORD type.

Return value

Explanation

Refer to “Device Status” on page 4-1, for the device statuses that you can acquire.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

Rev.D Reference 4-17

TM-S1000 API for EMEA Reference Guide

BiSetStatusBackFunction

This registers the called callback function on the occasion of device status is changed.

Note
This is unavailable when the development environment is VB.

Syntax

int BiSetStatusBackFunction (int nHandle, int (CALLBACK EXPORT *pStatusCB)
(DWORD dwStatus))

Argument

nHandle: Specifies the handle. This is an INT type.

(CALLBACK EXPORT *pStatusCB) (DWORD dwStatus):
Sets the callback function's address. This is an INT type.

Callback function parameters

dwStatus: The current status of the device is set. This is a DWORD type.

Return value

Explanation

When the device status has changed, the 4 bytes of the Device status that are cast as DWORD are
saved to dwStatus. For details on the Device status, refer to “Device Status” on page 4-1.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-18 Reference Rev.D

BiSetStatusBackFunctionEx

This registers the called callback function on the occasion of device status is changed.
Identifies the port originating the CALLBACK, in addition to the functions of
BiSetStatusBackFunction.

Note
This is unavailable when the development environment is VB.

Syntax

int BiSetStatusBackFunctionEx (int nHandle,
int (CALLBACK EXPORT *pStatusCB)(DWORD dwStatus,
LPSTR lpcPortName)

Argument

nHandle: Specifies the handle. This is an INT type.

int (CALLBACK EXPORT *pStatusCB)(DWORD dwStatus, LPSTR lpcPortName):
Sets the callback function's address. This is an INT type.

Callback function parameters

dwStatus: The Device status held by the TM-S1000 API is set. This is a DWORD type.

lpcPortName: Returns the name of the CALLBACK printer port. This is an LPSTR type.

Return value

Explanation

When the device status has changed, the 4 bytes of the Device status that are cast as DWORD are
saved to dwStatus. For details on the Device status, refer to “Device Status” on page 4-1. Also,
such that CALLBACK can be confirmed from any port, the port names are set in 1pcPortName

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-19

TM-S1000 API for EMEA Reference Guide

BiSetStatusBackWnd

Upon a status notification, this records the handle of the button that sends a button click event
and the address of the memory that sets the status information.

Syntax

int BiSetStatusBackWnd(int nHandle, long hWnd, LPDWORD lpStatus)

Argument

nHandle: Specifies the handle. This is an INT type.

hWnd: This specifies the handle of the button that sends a button click event upon at status
notification.

lpStatus: Sets the status value in lpStatus and issues an event.

Return value

Explanation

When there has been a change in the status of the device, posts notification of a click event being
sent for the specified button. For details on the status values, see “Device Status” on page 4-1.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-20 Reference Rev.D

BiCancelStatusBack

This cancels Automatic Status Back registered by BiSetStatusBackFunction,
BiSetStatusBackFunctionEx or BiSetStatusBackWnd.

Syntax

int BiCancelStatusBack (int nHandle)

Argument

nHandle: Specifies the handle. This is an INT type.

Return value

Explanation

The cancel request is ignored and SUCCESS return if a status notification request has not been
registered.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

Rev.D Reference 4-21

TM-S1000 API for EMEA Reference Guide

BiResetPrinter

Resets the device.

Syntax

int BiResetPrinter (int nHandle)

Argument

nHandle: Specifies the handle. This is an INT type.

Return value

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-22 Reference Rev.D

BiGetCounter

Acquires the maintenance counter value.

Syntax

int BiGetCounter (int nHandle, WORD readno, LPDWORD readcounter)

Argument

nHandle: Specifies the handle. This is an INT type.

readno: Specifies the number of the acquired maintenance counter. This is a WORD type.

readcounter: Returns the maintenance counter. This is an LPDWORD type.

Return value

Explanation

Refer to “Maintenance Counter” on page 4-3 regarding the device counter and the acquired
maintenance counters.
The maintenance counters include those that can be reset by the user and those that are not reset
and count.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

-90 ERR_PARAM Parameter error

 -110 ERR_OFFLINE It was opened in the offline state, so it cannot be used until the online
state is recovered.

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-23

TM-S1000 API for EMEA Reference Guide

BiResetCounter

Resets the maintenance counter.

Syntax

int BiResetCounter (int nHandle, WORD writeno)

Argument

nHandle: Specifies the handle. This is an INT type.

writeno: Specifies the number of the reset maintenance counter. This is a WORD type.

Return value

Explanation

The maintenance counters include those that can be reset by the user and those that are not reset
and count. Refer to “Maintenance Counter” on page 4-3.

Note

In order for this API to be compatible with the TM-J9000 API, the magnetic text read count and
check sheet image read count are defined separately, but the maintenance counters are stored as
the read count. As a result, resetting either the magnetic text read count or the check sheet read
count resets both counts.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

-90 ERR_PARAM Parameter error

 -110 ERR_OFFLINE It was opened in the offline state, so it cannot be used until the online
state is recovered.

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-24 Reference Rev.D

BiCancelError

Restores recoverable device errors.

Syntax

int BiCancelError(int nHandle)

Argument

nHandle: Specifies the handle. This is an INT type.

Return value

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

Rev.D Reference 4-25

TM-S1000 API for EMEA Reference Guide

BiGetType

Acquires the device type ID. The TM-S1000 is not used as it acquires meaningless information.
This API is compatible with the TM-J9000.

Syntax

int BiGetType (int nHandle, LPBYTE typeID, LPBYTE font, LPBYTE exrom, LPBYTE special)

Argument

nHandle: Specifies the handle. This is an INT type.

typeID: Returns the device type ID. This is an LPBYTE type.

font: Not used

exrom: Not used

special: Not used

Return value

Explanation

Refer to “Type ID” on page 4-3.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

-90 ERR_PARAM Parameter error

 -110 ERR_OFFLINE It was opened in the offline state, so it cannot be used until the online
state is recovered.

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-26 Reference Rev.D

BiGetOfflineCode

Acquires the cause of the device to go offline. This API is compatible with the TM-J9000.

Syntax

int BiGetOfflineCode (int nHandle, LPBYTE lpOfflinecode)

Argument

nHandle: Specifies the handle. This is an INT type.

offlinecode: Returns the 5-byte value indicating the reason for the device going offline. This is
an LPBYTE type.

Note
When the cause of the device going offline is acquired while the device is online, zero
will be written to the leading byte of lpOfflinecode.

Return value

Explanation

Refer to “Offline Code (BiGetOfflineCode)” on page 4-6.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-27

TM-S1000 API for EMEA Reference Guide

BiGetOfflineCodeByIndex

Acquires the cause of the device to go offline from the leading byte.

Syntax

int BiGetOfflineCodeByIndex (int nHandle, int nIndex, LPBYTE lpOfflinecode)

Argument

nHandle: Specifies the handle. This is an INT type.

nIndex: Specifies bytes (1 to 5) of the acquired cause of the device going offline. This is an
INT type.

offlinecode: Returns the 5-byte value indicating the reason for the device going offline. This is
an LPBYTE type.

Note
When the cause of the device going offline is acquired while the device is online, zero
will be written to the leading byte of lpOfflinecode.

Return value

Explanation

Refer to “Offline Code (BiGetOfflineCodeByIndex)” on page 4-8.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-28 Reference Rev.D

BiMICRSelectDataHandling

Specifies an operation when an error occurs during reading check paper. This API is compatible
with the TM-J9000.

Syntax

int BiMICRSelectDataHandling(int nHandle, BYTE charSelect, BYTE detailSelect,
BYTE errorSelect)

Argument

nHandle: Specifies the handle. This is an INT type.

charSelect: Specifies how to handle the characters unable to be analyzed. This is a BYTE type.

detailSelect: Not used.

errorSelect: Specifies whether or not to terminate reading when an error has occurred. When
the reading process ends normally or when an error occurs while the reading
result is being saved, ignores errorSelect and continues reading. The values below
can be specified solely or two among them together.

Value Description

0 Terminates analyzing characters when a character that is unable to be analyzed has been
detected, and does not save the read data.

1 Replaces the characters that are unable to be analyzed with ‘?,’ and continues to analyze
characters.

Constant Value Description

ES_STOP_ALL 0 Terminates reading when an error has occurred.

ES_CONTINUE_ALL 1 Continues the reading process when an error occurs if
continuing is possible.
The 4 errors where continuing is possible are double feed,
magnetic waveform detection error,unrecognized character
detection error, and noise error.

ES_CONTINUE_DOUBLEFEED 2 Continues reading even after a double feeding error has
occurred.

ES_CONTINUE_NODATA 4 Continues reading even after a magnetic waveform detection
error has occurred.

ES_CONTINUE_BADDATA 8 Continues reading even after an unanalyzable character
detection error has occurred.

ES_CONTINUE_NOISE 16 Continues reading even after a noise error has occurred.

Rev.D Reference 4-29

TM-S1000 API for EMEA Reference Guide

Return value

Note

For compatiblility with the TM-J9000 driver, when MF_PROCESS structure is not set and the
initial value defined with the MF_PROCESS structure and the action defined with errorSelect are
noneqivalent, the priority is given to the action defined with errorSelect.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-30 Reference Rev.D

BiMICRGetStatus

Acquires the MICR status. This API is compatible with the TM-J9000.

Syntax

int BiMICRGetStatus (int nHandle, LPBYTE pStatus)

Argument

nHandle: Specifies the handle. This is an INT type.

pStatus: Specifies the memory address that acquires the MICR status. This is an LPBYTE
type.

Return value

Explanation

Refer to “MICR Status” on page 4-10 regarding the acquired MICR status.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

-90 ERR_PARAM Parameter error

-110 ERR_OFFLINE It was opened in the offline state, so it cannot be used until the online
state is recovered.

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-31

TM-S1000 API for EMEA Reference Guide

BiMICRCleaning

Cleans the MICR mechanism.

Syntax

int BiMICRCleaning (int nHandle)

Argument

nHandle: Specifies the handle. This is an INT type.

Return value

Explanation

If this function is called, the mechanism waits for the cleaning sheet to be inserted. Insert the
cleaning sheet and carry out cleaning of the mechanism.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

 -110 ERR_OFFLINE It was opened in the offline state, so it cannot be used until the online
state is recovered.

4-32 Reference Rev.D

BiSCNSetImageQuality

Sets the image scanning quality. 256 gray scale (8 bit) is used for setting the sharpness, and Black
and White (1 bit) is used for setting the Threshold.

Syntax

int BiSCNSetImageQuality(int nHandle, BYTE bColorDepth, char bThreshold,
BYTE bColor,BYTE bExOption)

Argument

nHandle: Specifies the handle. This is an INT type.

bColorDepth: Specifies the tonal gradation (the number of bits used for 1 pixel). The valid
specification values are 1 or 8. The default value is EPS_BI_SCN_1BIT. This is a
BYTE type.

bThreshold: Brightness threshold value (-128 ~ 127) for Black and White. Used when
bColorDepth=EPS_BI_SCN_1BIT, and bExOption=EPS_BI_SCN_MANUAL. The
value -128 to 127 corresponds to 0 to 255 of the brightness. When “0” is specified,
the intermediate brightness “128” is applied. This is a char type.

bColor: Specifies the color. Valid specification values are as shown below. This is a BYTE
type. However, in the current version, this value is fixed at
EPS_BI_SCN_MONOCHROME, and any other value that is specified is regarded
as invalid.

bExOption: Specifies density adjustment types. Valid specification values are as shown below.
This is a BYTE type.

Constant Value Description

EPS_BI_SCN_1BIT 1 Black and White (1 bit)

EPS_BI_SCN_8BIT 8 256 gray scale (8 bit)

Constant Value Description

EPS_BI_SCN_MONOCHROME 48 Monochrome

EPS_BI_SCN_COLOR 49 TM-S1000 API does not support this.

Constant Value Description

EPS_BI_SCN_MANUAL 49 Applies the value of bThreshold for Black and White.

EPS_BI_SCN_SHARP 50 Sharpening

EPS_BI_SCN_SHARP_CUSTOM 51 Sharpening (for compatibility with TM-J9000 API. The
setting is the same as EPS_BI_SCN_SHARP)

EPS_BI_SCN_SHARP_CUSTOM2 52 Sharpening (for compatibility with TM-J9000 API. The
setting is the same as EPS_BI_SCN_SHARP)

EPS_BI_SCN_SHARP_CUSTOM3 53 Edge-preserving smoothing
Recommended when JPEG 2000 is used with your
application.

Rev.D Reference 4-33

TM-S1000 API for EMEA Reference Guide

Return value

Explanation

Refer to the following for details on this API

This function is valid for the scanner unit currently selected.

❏ If bColorDepth is set to EPS_BI_SCN_8BITS(8), the parameter bThreshold is ignored.

❏ In the case of Executing BiSCNMICRFunction,The set reading quality is applied beginning
with the next image data read. (Reading quality is not applied to image data that has already
been read.)

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

bColorDepth bExOption Scan result

EPS_BI_SCN_1BIT EPS_BI_SCN_MANUAL A value set to bThreshold is applied

EPS_BI_SCN_SHARP bThreshold is automatically set and the set value is
applied

EPS_BI_SCN_8BIT EPS_BI_SCN_MANUAL No special handling is applied.

EPS_BI_SCN_SHARP Sharpening

4-34 Reference Rev.D

BiSCNSetImageFormat

Selects the format of the scanning image data. The selected format is enabled until
BiCloseMonPrinter is executed.

Syntax

int BiSCNSetImageFormat(int nHandle, BYTE bFormat)

Argument

nHandle: Specifies the handle. This is an INT type.

bFormat: Specifies the format of image data notified. The valid specification values are as
shown below. The default value is EPS_BI_SCN_TIFF(1). This is a BYTE type.

Note
To save as an image file of ANSI X9.100-181-2007 standard, it must be a TIFF format with
CCITT(Group 4) compression data (bFormat = EPS_BI_SCN_TIFF), black and white (bColorDepth
of BiSCNSetImageQuality = EPS_BI_SCN_1BIT), and whose resolution is 200 dpi (sResolution of
MF_SCAN = MF_SCAN_DPI_200).

Return value

Constant Value Description 8 Bit 1 Bit

EPS_BI_SCN_TIFF 1 TIFF format CCITT (Group 4) compressed data - ✔

EPS_BI_SCN_RASTER 2 Raster format uncompressed data ✔ -

EPS_BI_SCN_BITMAP 3 Bitmap format uncompressed data ✔ ✔

EPS_BI_SCN_TIFF256 4 TIFF format uncompressed data ✔ -

EPS_BI_SCN_JPEGHIGH 5 JPEG format high compression (size priority)
data

✔ -

EPS_BI_SCN_JPEGNORMAL 6 JPEG format normal compression data ✔ -

EPS_BI_SCN_JPEGLOW 7 JPEG format low compression (quality priority)
data

✔ -

EPS_BI_SCN_JTIFF 8 TIFF format JPEG compressed data ✔ -

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-35

TM-S1000 API for EMEA Reference Guide

Explanation

This function is valid for the scanner unit currently selected.

In the case of Executing BiSCNMICRFunction,The set reading quality is applied beginning with
the next image data read. (Reading quality is not applied to image data that has already been
read.)

When using BiSCNMICRFunctionPostPrint or BiSCNMICRFunctionContinuously, the image
data format setting made by this API can be applied even after acquiring an image using
BiGetScanImage in MF_DATA_RECEIVE_DONE callback. To do that, call BiGetScanImage
again after setting the image data format using this API.

4-36 Reference Rev.D

BiSCNSetScanArea

Configures the reading area of the image data. This API is compatible with the TM-J9000.

Syntax

int BiSCNSetScanArea (int nHandle, BYTE bStartX, BYTE bStartY, BYTE bEndX,
BYTE bEndY)

Argument

nHandle: Specifies the handle. This is an INT type.

bStartX: Specifies the start X coordinate (0 to 98) of the read area in units of mm.
This is a BYTE type. The initial value is 0.

bStartY: Specifies the start Y coordinate (0 to 228) of the read area in units of mm.
This is a BYTE type. The initial value is 0.

bEndX: Specifies the end X coordinate (0 to 100) of the read area in units of mm.
This is a BYTE type. The initial value is 70.
When 0 is specified, the maximum value supported by the device is specified.

bEndY: Specifies the end Y coordinate (0 to 230) of the read area in units of mm.
This is a BYTE type. The initial value is 0.
When 0 is specified, the internal measured value of the device is specified.

Return value

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-37

TM-S1000 API for EMEA Reference Guide

Explanation

The origin of the front face coordinates (0,0) corresponds the bottom-right corner of the check
sheet, when oriented as if to be inserted. The origin of the rear face coordinates (0,0) corresponds
the bottom-left corner of the check sheet, when oriented as if to be inserted. The set value
remains valid until the device is closed.

Note

❏ When the start point is beyond the end point (Start >/= End), ERR_PARAM is returned to
the return value.

❏ When a value exceeding the area that the device can read is specified, the maximum value
within the area that the device can read is set.

❏ The read area set by this API is applied from the next read processing.

❏ If an odd number is specified, it is rounded to the nearest even number. The start point
(bStartX,bStartY) is rounded down, and the end point (bEndX,bEndY) is rounded up to the
nearest even number.

Frontside

X directionOriginX direction

12
34

56
78

90
 1

23
45

 6
78

90 A
B

C
D

E
FG

P
aper insertion direction

Y
 direction

Y
 direction

4-38 Reference Rev.D

BiSCNGetImageQuality

Acquires the scanning quality of the image.

Syntax

int BiSCNGetImageQuality(int nHandle, LPBYTE pColorDepth, char *pThreshold,
 LPBYTE pColor,LPBYTE pExOption)

Argument

nHandle: Specifies the handle. This is an INT type.

pColorDepth: Specifies the memory address where the tonal gradation is set. This is an LPBYTE
type.

pThreshold: Specifies the memory address where the density threshold value is set. This is a
char type.

pColor: Specifies the memory address where color is set. The set value is as shown below.
This is an LPBYTE type.

pExOption: Specifies a memory address to which a density adjustment type is set. Set values
are as below. This is an LPBYTE type.

Constant Value Description

EPS_BI_SCN_1BIT 1 1 bit

EPS_BI_SCN_8BIT 8 8 bit

Constant Value Description

EPS_BI_SCN_MONOCHROME 48 Black and White

EPS_BI_SCN_COLOR 49 Color

Constant Value Description

EPS_BI_SCN_MANUAL 49 Density is adjusted manually.
(Density adjustment is not executed by the driver.)

EPS_BI_SCN_SHARP 50 Sharpening

EPS_BI_SCN_SHARP_CUSTOM 51 Sharpening (for compatibility with TM-J9000 API. The
setting is the same as EPS_BI_SCN_SHARP.)

EPS_BI_SCN_SHARP_CUSTOM2 52 Sharpening (for compatibility with TM-J9000 API. The
setting is the same as EPS_BI_SCN_SHARP.)

EPS_BI_SCN_SHARP_CUSTOM3 53 Edge-preserving smoothing

Rev.D Reference 4-39

TM-S1000 API for EMEA Reference Guide

Return value

Explanation

Check the acquired image scan quality referring to the table below.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

bColorDepth bExOption Scan result

EPS_BI_SCN_1BIT EPS_BI_SCN_MANUAL A value set to bThreshold is applied

EPS_BI_SCN_SHARP bThreshold is automatically set, and the set value is
applied

EPS_BI_SCN_8BIT EPS_BI_SCN_MANUAL Settings of only bColorDepth and bColor are applied

EPS_BI_SCN_SHARP Sharpening

4-40 Reference Rev.D

BiSCNGetImageFormat

Acquires the format of the image.

Syntax

int BiSCNGetImageFormat(int nHandle, LPBYTE pFormat)

Argument

nHandle: Specifies the handle. This is an INT type.

pFormat: Specifies the memory address where the format of the notified image data is set. The
set value is as shown below. This is an LPBYTE type.

Return value

Constant Value Description

EPS_BI_SCN_TIFF 1 TIFF format CCITT (Group 4) compressed data

EPS_BI_SCN_RASTER 2 Raster format uncompressed data

EPS_BI_SCN_BITMAP 3 Bitmap format uncompressed data

EPS_BI_SCN_TIFF256 4 TIFF format uncompressed data

EPS_BI_SCN_JPEGHIGH 5 JPEG format high compression (size priority) data

EPS_BI_SCN_JPEGNORMAL 6 JPEG format normal compression data

EPS_BI_SCN_JPEGLOW 7 JPEG format low compression (quality priority) data

EPS_BI_SCN_JTIFF 8 TIFF format JPEG compressed data

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-41

TM-S1000 API for EMEA Reference Guide

BiSCNGetScanArea

The read area of the device scanner image is acquired. This API is compatible with the TM-J9000.

Syntax

int BiSCNGetScanArea (int nHandle, LPBYTE pStartX, LPBYTE pStartY, LPBYTE pEndX,
LPBYTE pEndY)

Argument

nHandle: Specifies the handle. This is an INT type.

bStartX: Returns the start X coordinate of the read area. This is a BYTE type.

bStartY: Returns the start Y coordinate of the read area. This is a BYTE type.

bEndX: Returns the end X coordinate of the read area. This is a BYTE type.

bEndY: Returns the end X coordinate of the read area. This is a BYTE type.

Return Value

Explanation

The origin of the surface coordinates (0,0) corresponds the bottom-right corner of the check
sheet, when oriented as if to be inserted. The origin of the rear face coordinates (0,0) corresponds
the bottom-left corner of the check sheet, when oriented as if to be inserted.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

4-42 Reference Rev.D

BiSCNSetCroppingArea

Sets the cropping area. This API is compatible with the TM-J9000.

Syntax

int BiSCNSetCroppingArea (int nHandle, BYTE bAreaNo, BYTE bStartX,
BYTE bStartY,BYTE bEndX, BYTE bEndY)

Argument

nHandle: Specifies the handle. This is an INT type.

bAreaNo: Specifies the cropping area number (1 to 255). This is a BYTE type.

bStartX: Specifies the start X coordinate (0 to 98) of the cropping area in units of mm.
This is a BYTE type.

bStartY: Specifies the start Y coordinate (0 to 228) of the cropping area in units of mm.
This is a BYTE type.

bEndX: Specifies the end X coordinate (2 to 100) of the cropping area in units of mm.
This is a BYTE type. When a value that exceeds the area that can be cropped, the
maximum value of the croppable area is set.

bEndY: Specifies the end Y coordinate (2 to 230) of the read area in units of mm.
This is a BYTE type. When a value that exceeds the area that can be cropped, the
maximum value of the croppable area is set.

Return Value

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-43

TM-S1000 API for EMEA Reference Guide

Explanation

The origin of the surface coordinates (0,0) corresponds the bottom-right corner of the check
sheet, when oriented as if to be inserted. The origin of the rear face coordinates (0,0) corresponds
the bottom-left corner of the check sheet, when oriented as if to be inserted. The set value
remains valid until the device is closed.

Note

❏ When the start point is beyond the end point (Start >/= End), ERR_PARAM is returned to
the return value.

❏ When the specified Cropping area number already exists, set a new Cropping area.
❏ When a value that exceeds the area that can be cropped for the device, the maximum value

of the area that the device can crop is set.
❏ The read area set by this API is applied from the next read processing.
❏ If an odd number is specified, it is rounded to the nearest even number. The start point

(bStartX, bStartY) is rounded down, and the end point (bEndX, bEndY) is rounded up to the
nearest even number.

Frontside

X directionOriginX direction

12
34

56
78

90
 1

23
45

 6
78

90 A
B

C
D

E
FG

P
aper insertion direction

Y
 direction

Y
 direction

4-44 Reference Rev.D

BiSCNGetCroppingArea

Acquires cropping area information from the device. This API is compatible with the TM-J9000.

Syntax

int BiSCNGetCroppingArea (int nHandle, LPWORD pBuffSize, LPBYTE pBuff)

Argument

nHandle: Specifies the handle. This is an INT type.

pBuffSize: Specifies the size of the memory in which the cropping area information is set.
After the BiSCNGetCroppingArea designation has been issued, the size of the
actually read data is returned. When the memory size specified in pBuffSize is
insufficient, the required memory size is returned. Nothing is returned in the
event of any other error. This is an LPWORD type.

pBuff: Specifies the memory address that acquires the cropping area information. This is
an LPBYTE type.

Return Value

Explanation

pBuff acquires the cropping area information in the format as shown below.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-140 ERR_BUFFER_OVER_FLOW Buffer overflow error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Cropping area number

Start X coordinate of the cropping area

Start Y coordinate of the cropping area

End X coordinate of the cropping area
End Y coordinate of the cropping area

Rev.D Reference 4-45

TM-S1000 API for EMEA Reference Guide

BiSCNDeleteCroppingArea

Deletes a registered cropping area. This API is compatible with the TM-J9000.

Syntax

int BiSCNDeleteCroppingArea (int nHandle, BYTE AreaNo)

Argument

nHandle: Specifies the handle. This is an INT type.

bAreaNo: Specifies the number (0 to 255) of the cropping area to be deleted. This is a BYTE
type.

Return Value

Explanation

When 0 is specified for bAreaNo, the entire cropping area is deleted.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-46 Reference Rev.D

BiSCNSelectScanUnit

Sets the unit that operates image scanning. This API is compatible with the TM-J9000.

Syntax

int BiSCNSelectScanUnit(int nHandle, BYTE bSelectUnit)

Argument

nHandle: Specifies the handle. This is an INT type.

bSelectUnit: Specifies the unit to scan. The selectable value is as follows

Return value

Explanation

Sets EPS_BI_SCN_UNIT_CHECKPAPER for the initial value. The functions below are effective
to the unit currently selected.

• BiSCNSetImageQuality

• BiSCNSetScanArea

• BiSCNSetImageFormat

• BiSCNSetCroppingArea

• BiSCNGetImageQuality

• BiSCNGetScanArea

• BiSCNGetCroppingArea

Constant Value Description

EPS_BI_SCN_UNIT_CHECKPAPER 48 Check reading unit

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-47

TM-S1000 API for EMEA Reference Guide

BiSCNMICRFunction

TM-J9000-compatible API that performs reading with the scanner. Use of
BiSCNMICRFunctionContinuously or BiSCNMICRFunctionPostPrint is recommended.

Syntax

int BiSCNMICRFunction(int nHandle, LPVOID lpvStruct, WORD wFunction)

Argument

nHandle: Specifies the handle. This is an INT type.

lpvStruct: The address of the parameter structure specified for each unit. This is an LPVOID
type.

wFunction: Specifies the functions for BiSCNMICRFunction to execute. Reading-related
settings are notified to StatusAPI by specifying MF_SET_MICR_PARAM, etc. and
executing wFunction. If the members of the structure are changed after the setting
notification, another notification with by using wFunction is required. Include the
header file submitted in the definition name used for BiSCNMICRFunction. This is
a WORD type.

lpvStruct supplementary explanation
Refer to “BiSCNMICRFunctionContinuously” on page 4-58.

Definition of function settings
Refer to “BiSCNMICRFunctionContinuously” on page 4-58.

Initial values set to each of the structures
Refer to “BiSCNMICRFunctionContinuously” on page 4-58.

Return value

BiSCNMICRFunction

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-110 ERR_OFFLINE Cannot be used due to waiting for online reset

-300 ERR_PAPERINSERT_TIME
OUT

Paper insertion time exceeded

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

4-48 Reference Rev.D

-440 ERR_MICR Printer failed in MICR reading

-450 ERR_SCAN Printer failed in image scanning

-1020 ERR_PAPER_JAM Paper jam has occurred

-1100 ERR_PAPER_INSERT Paper insertion error

MF_BASE.iRet

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-300 ERR_PAPERINSERT_TIME
OUT

Paper insertion time exceeded

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

-440 ERR_MICR Printer failed in MICR reading

-450 ERR_SCAN Printer failed in image scanning

-470 ERR_NOT_EXEC Process not being executed

-1020 ERR_PAPER_JAM Paper jam has occurred

-1100 ERR_PAPER_INSERT Paper insertion error

MF_SCAN.iRet

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

-450 ERR_SCAN Printer failed in image scanning

-470 ERR_NOT_EXEC Process not being executed

BiSCNMICRFunction

Value Constant Description

Rev.D Reference 4-49

TM-S1000 API for EMEA Reference Guide

MF_MICR.iRet

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-140 ERR_BUFFER_OVER_FLO
W

Buffer overflow error

-220 ERR_NOT_FOUND No data error

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

-440 ERR_MICR Printer failed in MICR reading

-470 ERR_NOT_EXEC Process not being executed

MF_BARCODE.iRet

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-90 ERR_PARAM Parameter error

-220 ERR_NOT_FOUND No data error

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

-470 ERR_NOT_EXEC Process not being executed

-1130 ERR_BARCODE_NODATA Barcode cannot be detected.

MF_PRINT.iRet

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

-470 ERR_NOT_EXEC Process not being executed

4-50 Reference Rev.D

Explanation

Specify the structure for the parameters of the function you wish to use among SCAN, MICR,
and Transaction printing to call BiSCNMICRFunction. Be sure to set MF_SET_BASE_PARAM.
To set the parameter structure again, change the members of the parameter structure and
specify MF_SET_ xxxx_PARAM again to call BiSCNMICRFunction. The entire information on
the structure is stored with StatusAPI until BiCloseMonPrinter is executed.

Specifying MF_EXEC for the third parameter executes the specified function.
BiSCNMICRFunction performs in order of SCAN, MICR, and Transaction. As you are to set the
return value to the parameter structure, do not scrap the structure. If you still scrap the
structure, do so after calling MF_CLEAR_xxxx_PARAM.

Returns ERR_PARAM (Not ERR_NOT_SUPPORT) if any unsupported functions are specified.

Rev.D Reference 4-51

TM-S1000 API for EMEA Reference Guide

* With WM_MF_PROGRESS, reading unit numbers are set to LOBYTE of HIWORD in wParam.
MF_PHASE_INIT and other phase numbers are set in LOBYTE of LOWORD. For example, the
reading unit number for check paper is EPS_BI_SCN_UNIT_CHECKPAPER.

Progress Status Messages

Message wParam lParam Description

WM_MF_DONE - Return value Ends BiSCNMICRFunction.

WM_MF_PROGRESS MF_PHASE_INIT MF_PROGRESS_START Starts initialization.

MF_PROGRESS_WAIT_
PAPER

Waiting for the paper to be inserted. This
message is not sent when the paper is
already set.

MF_PROGRESS_CLUM
P_PAPER

The paper is clamped and is being fed.

MF_PROGRESS_PAPER
_PILED

Detected double feeding.

MF_PROGRESS_DONE The device has finished scanning /MICR
reading.

MF_PHASE_SCAN Progress status of
reading the table (%)

MF_SCAN_FACE_FRONT is set to the
lower byte of the upper WORD, and the
percentage is set to the lower byte of
the lower WORD. 0 % is notified when
reading has started, and 100 % is notified
when reading has finished.

Progress status of
reading the rear face
(%)

MF_SCAN_FACE_BACK is set to the lower
byte of the upper WORD, and the
percentage is set to the lower byte of
the lower WORD. 0 % is notified when
reading has started, and 100 % is notified
when reading has finished.

MF_PHASE_MICR MF_PROGRESS_START MIC_OCR reading has started.

MF_PROGRESS_DONE MIC_OCR reading has finished.

MF_PHASE_BARC
ODE

Progress status of
reading the table (%)

MF_SCAN_FACE_FRONT is set to the
lower byte of the upper WORD, and the
percentage is set to the lower byte of
the lower WORD. 0 % is notified when
reading has started, and 100 % is notified
when reading has finished.

Progress status of
reading the rear face
(%)

MF_SCAN_FACE_BACK is set to the lower
byte of the upper WORD, and the
percentage is set to the lower byte of
the lower WORD. 0 % is notified when
reading has started, and 100 % is notified
when reading has finished.

MF_PHASE_PRINT MF_PROGRESS_START Transaction printing has started.

MF_PROGRESS_DONE Transaction printing has finished.

MF_PHASE_EXIT MF_PROGRESS_START Post-processing of paper edjection, etc.
has started.

MF_PROGRESS_DONE Post-processing of paper edjection, etc.
has finished.

4-52 Reference Rev.D

* The contents of wParam and lParam on reception of WM_MF_PROGRESS can be obtained with the
macros provided below.

Note

1. When use of OCR is specified (with MF_MICR_USE_OCR bit of bMicOcrSelect of MF_MICR
structure is set to ON) in the MICR setting, returns ERR_PARAM on execution of MF_EXEC
if the scanning parameter for surface scanning is not set. This is because ORC processing
requires the scan image of the front face.

2. When ElectricEndorsement processing is enabled (with blElectricEndorse of MF_PRINT
structure is set to TRUE) in the transaction printing setting, returns ERR_PARAM on
execution of MF_EXEC if the paramaters for endosement scanning is not set. This is because
ElectricEndorsement processing requires the scan image of the rear face. When the
ElectricEndorsement processing is enabled, no information is set to bStatus, bDetail,
dwXSize, dwYSize, dwScanSize, or lpbScanData of the rear face scanning parameters until
the transaction printing has finished even if scanning the rear face has succeeded.

3. Among the member variables for the MF_xxx structure, give special attention to the ones
that stores address values. If an invalid address value is specified and executed this function,
an application error may result. Therefore, be sure to specify NULL if specifying an address
is unnecessary.

4. Among the member variables for the MF_xxx structure, give special attention to the ones
that stores character strings. If this function is specified without including '\0' that indicates
the final character string in the variables, an application error may result. Therefore, be sure
to include '\0' in the variables.

5. If MF_BASE_MESSAGE_NO_MESSAGE is set for the dwNotifyType member variables of
the MF_BASE01 structure and MF_EXEC of this function is executed (MF_EXEC of this
function is executed synchronously), double feeding detection does not function.

Macro
wParam /
lParam Description

MF_MACRO_GETUNITID wParam For reading the unit number

MF_MACRO_GETPHASE wParam For obtaining the phase number

MF_MACRO_GETFACE lParam For obtaining the scanned image face

MF_MACRO_PERCENT lParam For obtaining the image scanning
percentage

Rev.D Reference 4-53

TM-S1000 API for EMEA Reference Guide

BiSCNMICRCancelFunction

BiSCNMICRFunctionContinuously is interrupted.

Syntax

int BiSCNMICRCancelFunction(int nHandle, WORD wEjectType)

Argument

nHandle: Specifies the handle. This is an INT type.

wEjectType: This specifies the method for discharging paper. This is an LPDWORD type.

Return value

Explanation

BiSCNMICRFunctionContinuously is interrupted. Alternatively, paper-eject is executed after
the ERR_LINE_OVERFLOW error occurs with the BiSCNMICRFunctionContinuously.
When interrupting the BiSCNMICRFunctionContinuously, if the interruption is not complete
after a maximum of 20 seconds has elapsed, ERR_TIMEOUT is returned Once interrupted, the
results are set in the storage area for the structure specified by
BiSCNMICRFunctionContinuously.
The only times that ERR_EXEC_FUNCTION is returned by this API is when there are
overlapping calls of this API with multiple threads and when the device is initialized after print
setup and turning the device power off and on.

Note

Even if MF_EJECT_RELEASE is specified as the parameter of this API, paper is not ejected to the
sub pocket. It is ejected to the main pocket.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

-90 ERR_PARAM Parameter error

-110 ERR_OFFLINE Cannot be used because of off-line return wait

-130 ERR_WITHOUT_CB BiSCNMICRFunctionPostPrint/ BiSCNMICRFunctionContinuously has not
been run

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

4-54 Reference Rev.D

BiSCNSelectScanFace

Specifies the back or front for an image that is being read.

Syntax

int BiSCNSelectScanFace(int nHandle, BYTE bFace)

Argument

nHandle: Specifies the handle. This is an INT type.

bFace: This specifies the back or front for an image that is being read. This is a BYTE type.

Return value

Explanation

MF_SCAN_FACE_FRONT is specified for the front and MF_SCAN_FACE_BACK for the back.
If values other than these are set, ERR_PARAM is returned.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-55

TM-S1000 API for EMEA Reference Guide

BiGetPrnCapability

Obtains the device information specified by the device ID.

Syntax

int BiGetPrnCapability (int nHandle, BYTE prnID, LPBYTE pBuffSize, LPBYTE pBuff)

Argument

nHandle: Specifies the handle. This is an INT type.

prnID: Specifies the device ID from which obtain information. See “Device information” on
page 4-1 for details on Device ID.

pBuffSize: Specifies the size of the memory to which the device information is stored. Values of
1 - 80 can be specified. After pBuffSize is run, sets the actual size of the read data. If
the actual data size exceeds the specified data size, notifies the operator of the actual
data size to set again. If any other errors occur, sets no value.

pBuff: Specifies the address of the memory to which the device information is stored.

Return value

Explanation

Specifying an unsupported device ID and issuing this command results in either of the
following. The result depends on the product and firmware.

• Time error occurs (Return value: ERR_TIMEOUT).

• Returns “Success” (Return value: SUCCESS), and sets a value to the parameter pBuff.
However, Epson does not guarantee the obtained pBuff parameter value.

See Device information for details on Device ID.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

-90 ERR_PARAM Parameter error

-110 ERR_OFFLINE Cannot be used because the device is waiting for online reset.

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-56 Reference Rev.D

BiCloseMonPrinter

This closes the device that is undergoing status monitoring.

Syntax

int BiCloseMonPrinter (int nHandle)

Argument

nHandle: Specifies the handle. This is an INT type.

Return value

If closing of the device was successful, a 0 is returned. If there is an error, the following error
code (less than zero) is returned.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

Rev.D Reference 4-57

TM-S1000 API for EMEA Reference Guide

BiGetRealStatus

Acquires the current device status. The device status is set to the lpStatus. This API is compatible
with the TM-J9000.

Syntax

int BiGetRealStatus (int nHandle, LPDWORD lpStatus)

Argument

nHandle: Specifies the handle. This is an INT type.

lpStatus: The current status of the device is set. This is an LPDWORD type.

Return value

Explanation

Refer to “Device Status” on page 4-1, for the device statuses that you can acquire.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-58 Reference Rev.D

BiSCNMICRFunctionContinuously

Scans images successively, and reads MICR characters.

Syntax

int BiSCNMICRFunctionContinuously(int nHandle, LPVOID lpvStruct, WORD wFunction)

Argument

nHandle: Specifies the handle. This is an INT type.

lpvStruct: The address of the parameter structure specified for each unit. This is an LPVOID
type.

wFunction: Specifies the functions for the API to execute. For settings regarding reading, by
specifying MF_SET_MICR_PARAM and so on and executing this function, the API
is notified. If the members of the structure are changed after notification, it is
necessary to perform notification again with this function. Include the header file
submitted for the definition name used for this API. This is a WORD type.

lpvStruct supplementary explanation
For an explanation of the lpvStruct structure, refer to “Structures” on page 4-138 However, the
following values are not used with this API, or the values are not set.

<MF_BASE structure>

❏ dwNotifyType and uNotifyHandle are not used
Notification of the reading status of this API is performed by the handler registered with
BiSCNMICRSetStatusBackFunction.

❏ hProgressWnd is not used
This API does not provide notification of the progress status.

<MF_SCAN structure>

❏ wImageID is not used
Set the transaction number (ID) using BiSetTransactionNumber

❏ Do not set values in bStatus, bDetail, dwXSize, dwYSize, dwScanSize, and lpbScanData
Set values when getting the scan image with BiGetScanImage.

<MF_MICR structure>

❏ bMicOcrSelect and blParsing are not used
Use them when executing BiGetMICRText.

❏ Do not set values in bStatus, bDetail, szMicrStr, stOcrReliableInfo, szAccountNumber,
szAmount, szBankNumber, szSerialNumber, szEPC, szTransitNumber, lCheckType, and
lCountryCode
Set values when getting the MICR (OCR) text with BiGetMICRText.

Rev.D Reference 4-59

TM-S1000 API for EMEA Reference Guide

Supplemental Description for wFunction

Constant Description

MF_EXEC SCAN / MICR / Transaction printing is carried out according to the specified
parameters. The second parameter is ignored.

MF_CONTINUE ERR_NOT_SUPPORT is returned.

MF_MICR_RETRANS ERR_NOT_SUPPORT is returned.

MF_SCAN_FRONT_RETRANS ERR_NOT_SUPPORT is returned.

MF_SCAN_BACK_RETRANS ERR_NOT_SUPPORT is returned.

Definitions for Function Settings

Constant Description

MF_SET_BASE_PARAM This sets base parameters. The MF_BASE structure address is specified
in lpvStruct.

MF_SET_MICR_PARAM This sets MICR parameters. The MF_MICR structure address is specified
in lpvStruct.

MF_SET_SCAN_FRONT_PARAM This sets front side read scanning parameters. The MF_SCAN structure
address is specified in lpvStruct. The MF_SCAN structure has a different
address from the structure for reading the back side. When the same
address is specified, ERR_PARAM is returned. The operation is identical
when MF_SET_SCAN_PARAM is specified.

MF_SET_SCAN_BACK_PARAM This sets the back side read scanning parameters. The MF_SCAN
structure address is specified in lpvStruct. The MF_SCAN structure has a
different address from the structure for reading the front side. When
the same address is specified, ERR_PARAM is returned.

MF_SET_PRINT_PARAM This sets transaction printing parameters. The MF_PRINT01 structure
address is specified in lpvStruct.

MF_SET_PROCESS_PARAM This sets process parameters. The MF_PROCESS structure address is
specified in lpvStruct.

MF_SET_IQA_PARAM This sets IQA parameters. The MF_IQA structure address is specified in
lpvStruct.

MF_SET_BARCODE_FRONT_PARAM This sets the front side barcode decode parameters.
The MF_BARCODE structure address is specified in lpvStruct.

MF_SET_BARCODE_BACK_PARAM This sets the back side barcode decode parameters.
The MF_BARCODE structure address is specified in lpvStruct.

MF_CLEAR_BASE_PARAM This clears all the specifications for BASE / MICR / SCAN / PRINT/
PROCESS parameters. lpvStruct values are ignored.

MF_CLEAR_MICR_PARAM This clears the MICR parameter specifications. lpvStruct values are
ignored.

MF_CLEAR_SCAN_FRONT_PARAM This clears the scan parameter specifications. lpvStruct values are
ignored. The operation is identical when MF_CLEAR_SCAN_PARAM is
specified.

MF_CLEAR_SCAN_BACK_PARAM This clears the scan parameter specifications. lpvStruct values are
ignored.

MF_CLEAR_PRINT_PARAM This clears the transaction printing parameter specifications. lpvStruct
values are ignored.

4-60 Reference Rev.D

MF_CLEAR_PROCESS_PARAM This clears the process parameter specifications. lpvStruct values are
ignored.

MF_CLEAR_IQA_PARAM This clears the IQA parameter specifications. lpvStruct values are
ignored.

MF_CLEAR_BARCODE_FRONT_PARAM This clears the front side barcode decode parameters specifications.
lpvStruct values are ignored.

MF_CLEAR_BARCODE_BACK_PARAM This clears the back side barcode decode parameters specifications.
lpvStruct values are ignored.

MF_GET_BASE_DEFAULT This obtains the initial values for the device base structure.

MF_GET_MICR_DEFAULT This obtains the initial values for the device MICR structure.

MF_GET_SCAN_DEFAULT This obtains the initial values for the device SCAN structure.

MF_GET_SCAN_FRONT_DEFAULT This obtains the initial values for the device SCAN (front side) structure.

MF_GET_SCAN_BACK_DEFAULT This obtains the initial values for the device SCAN (back side)
structure.

MF_GET_PRINT_DEFAULT This obtains the initial values for the transaction printing structure.
* With API, the initial values of iSize and iVersion are not returned. The

application must specify these two values. Also, the initial value for
the structure must be obtained after zero clearing all member
variables except iSize and iVersion.

MF_GET_PROCESS_DEFAULT This obtains the initial values for the process structure.

MF_GET_IQA_DEFAULT This obtains the initial values for the IQA structure.

MF_GET_BARCODE_FRONT_DEFAULT This obtains the initial values for the device Barcode (front side)
structure.

MF_GET_BARCODE_BACK_DEFAULT This obtains the initial values for the device Barcode (back side)
structure.

Definitions for Function Settings

Constant Description

Rev.D Reference 4-61

TM-S1000 API for EMEA Reference Guide

Return value

BiSCNMICRFunction

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-110 ERR_OFFLINE Cannot be used due to waiting for online reset

-130 ERR_WITHOUT_CB Cannot be executed as neither of BiSCNMICRSetStatusBackFunction
is invoked

-300 ERR_PAPERINSERT_TIME
OUT

Paper insertion time exceeded

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

-440 ERR_MICR Printer failed in MICR reading

-450 ERR_SCAN Printer failed in image scanning

-460 ERR_LINE_OVERFLOW Line overflow occurred during transaction printing

-1010 ERR_PAPER_PILED Paper pilling error

-1020 ERR_PAPER_JAM Paper jam has occurred

-1030 ERR_COVER_OPEN Cover open error

-1040 ERR_MICR_NODATA MICR data is not existing

-1050 ERR_MICR_BADDATA MICR data is not able to recognize

-1070 ERR_MICR_NOISE Noise error has occurred during MICR reading

-1080 ERR_SCN_COMPRESS Scan image data compressing error

-1090 ERR_PAPER_EXIST API can not be execute because there is a paper on the path

-1100 ERR_PAPER_INSERT Paper insertion error

4-62 Reference Rev.D

MF_BASE.iRet

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-300 ERR_PAPERINSERT_TIME
OUT

Paper insertion time exceeded

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

-440 ERR_MICR Printer failed in MICR reading

-450 ERR_SCAN Printer failed in image scanning

-460 ERR_LINE_OVERFLOW Line overflow occurred during transaction printing

-470 ERR_NOT_EXEC Process not being executed

-1010 ERR_PAPER_PILED Paper pilling error

-1020 ERR_PAPER_JAM Paper jam has occurred

-1030 ERR_COVER_OPEN Cover open error

-1040 ERR_MICR_NODATA MICR data is not existing

-1050 ERR_MICR_BADDATA MICR data is not able to recognize

-1070 ERR_MICR_NOISE Noise error has occurred during MICR reading

-1080 ERR_SCN_COMPRESS Scan image data compressing error

-1090 ERR_PAPER_EXIST API can not be execute because there is a paper on the path

-1100 ERR_PAPER_INSERT Paper insertion error

Rev.D Reference 4-63

TM-S1000 API for EMEA Reference Guide

MF_SCAN.iRet

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

-450 ERR_SCAN Printer failed in image scanning

-470 ERR_NOT_EXEC Process not being executed

-1080 ERR_SCN_COMPRESS Scan image data compressing error

-1090 ERR_PAPER_EXIST API can not be execute because there is a paper on the path

-1100 ERR_PAPER_INSERT Paper insertion error

MF_MICR.iRet

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-140 ERR_BUFFER_OVER_FLO
W

Buffer overflow error

-220 ERR_NOT_FOUND No data error

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

-440 ERR_MICR Printer failed in MICR reading

-470 ERR_NOT_EXEC Process not being executed

-1040 ERR_MICR_NODATA MICR data is not existing

-1050 ERR_MICR_BADDATA MICR data is not able to recognize

-1070 ERR_MICR_NOISE Noise error has occurred during MICR reading

4-64 Reference Rev.D

Explanation

From the SCAN, MICR, or Ttransaction printing, specifies the parameters of the functions
wanted to be used by the structure and invokes this API. It is required that
MF_SET_BASE_PARAM is set. When resetting the structure, change the members of the
structure and invoke this API again specifying MF_SET_xxxx_PARAM. The contents of all the
structures are stored by TM-S1000 API until BiCloseMonPrinter is executed.

By specifying MF_EXEC as the 3rd parameter, the specified functions are executed for all check
paper inserted in the feeder. When the feeder is empty, it stops automatically. Be sure not to
discard the structure in order to set the return value to the structure. Be sure to invoke
MF_CLEAR_xxxx_PARAM before discarding the structure.

MF_BARCODE.iRet

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-90 ERR_PARAM Parameter error

-220 ERR_NOT_FOUND No data error

-470 ERR_NOT_EXEC Process not being executed

-1130 ERR_BARCODE_NODATA Barcode cannot be detected.

MF_PRINT.iRet

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible

-430 ERR_ABORT Canceled by BiSCNMICRCancelFunction or near full is detected

-460 ERR_LINE_OVERFLOW Line overflow occurred during transaction printing

-470 ERR_NOT_EXEC Process not being executed

MF_IQA_RESULT.iRet

Value Constant Description

0 SUCCESS Success

-450 ERR_SCAN Printer failed in image scanning

-1120 ERR_SCN_IQA Error is detected by the IQA validation.

Rev.D Reference 4-65

TM-S1000 API for EMEA Reference Guide

However, scan image data and MICR text is not set for dwXSize, dwYSize, dwScanSize, and
lpbScanData of the MF_SCAN structure, and szMicrStr, stOcrReliableInfo, szAccountNumber,
szAmount, szBankNumber, szSerialNumber, szEPC, szTransitNumber, lCheckType, and
lCountryCode of the MF_MICR structure. After MF_DATARECEIVE_DONE notification, by
specifying and invoking the TransactionNumber that corresponds to BiGetScanImage and
BiGetMicrText, the scan image data and MICR text can be acquired.

The TM-S1000 stops scanning operation when 10 scanned-in images are stored in the driver.
The TM-S1000 resumes the scanning operation when the number of stored images become two
or less.

Processing status list

Main status Sub status Outline

MF_FUNCTION_START - Started check paper scanning

MF_CHECKPAPER_PROCESS_START - Inserted check paper and started
scanning

MF_DATARECEIVE_START - Started receiving data

MF_DATARECEIVE_DONE - Completed receiving data

MF_CHECKPAPER_PROCESS_DONE - Ejected check paper and completed
the process

MF_FUNCTION_DONE iRet of the MF_BASE structure Finished check paper scanning

MF_ERROR_OCCURED ERR_PAPER_PILED Detected double feed
(Reading result: 47H)

ERR_FORM_LENGTH A paper jam error occurred
(Reading result details: 44H, 45H)

ERR_PAPER_JAM A paper jam error occurred
(Reading result details: 46H)

ERR_MECHANICAL A mechanical error has occurred in the
middle of scanning.
(Reading result details: 47H)

ERR_COVER_OPEN Processing has stopped because of the
cover open.
(Reading result details: 48H)

ERR_MICR_NODATA Magnetic waveform detection error
(MICR details: 45H)

ERR_MICR_BADDATA Characters unable to be analyized
detection error (MICR details: 46H)

ERR_MICR_NOISE Noise error(MICR details: 47H)

ERR_SCN_COMPRESS Data compression error
(SCN details: 47H)

ERR_SCN_IQA NOT_PASS is detected at the IQA
validation.

ERR_BARCODE_NODATA Barcode cannot be detected.

4-66 Reference Rev.D

Default Settings

MF_GET_BASE_DEFAULT MF_BASE01.dwNotifyType = MF_BASE_MESSAGE_HWND

MF_BASE01.dwTimeout = MF_BASE_TIMEOUT_DEFAULT

MF_BASE01.uNotifyHandle.hNotifyWnd = 0

MF_BASE01.hProgressWnd = 0

MF_BASE01.wErrorEject = MF_EXIT_ERROR_RELEASE

MF_BASE01.bBuzzerHz[0] = MF_BUZZER_HZ_4000

MF_BASE01.bBuzzerHz[1] = MF_BUZZER_HZ_4000

MF_BASE01.bBuzzerHz[2] = MF_BUZZER_HZ_4000

MF_BASE01.bBuzzerCount[0] = MF_BUZZER_DISABLE

MF_BASE01.bBuzzerCount[1] = MF_BUZZER_DISABLE

MF_BASE01.bBuzzerCount[2] = MF_BUZZER_DISABLE

MF_BASE01.bUseNVMemory = MF_BASE_NVMEMORY_NOT_USE

MF_BASE01.wSuccessEject = MF_EXIT_SUCCESS_DISCHARGE

MF_GET_MICR_DEFAULT MF_MICR.bFont = MF_MICR_FONT_E13B

MF_MICR.bMicOcrSelect = MF_MICR_USE_MICR

MF_MICR.blParsing = FALSE

MF_MICR.bStatus = 0

MF_MICR.bDetail = 0

MF_MICR.szMicrStr : zero clear

MF_MICR.stOcrReliableInfo : zero clearzero clear

MF_MICR.szAccountNumber : zero clear

MF_MICR.szAmount : zero clear

MF_MICR.szBankNumber : zero clear

MF_MICR.szSerialNumber : zero clear

MF_MICR.szEPC : zero clear

MF_MICR.szTransitNumber : zero clear

MF_MICR.lCheckType = 0

MF_MICR.lCountryCode = 0

MF_GET_SCAN_DEFAULT
MF_GET_SCAN_FRONT_DEFAULT
MF_GET_SCAN_BACK_DEFAULT

MF_SCAN.wImageID = 1

MF_SCAN.sResolution = MF_SCAN_DPI_DEFAULT

MF_SCAN.bAddInfoDataSize = 0

MF_SCAN.pAddInfoData = NULL

MF_SCAN.bStatus = 0

MF_SCAN.bDetail = 0

Rev.D Reference 4-67

TM-S1000 API for EMEA Reference Guide

MF_GET_SCAN_DEFAULT
MF_GET_SCAN_FRONT_DEFAULT
MF_GET_SCAN_BACK_DEFAULT

MF_SCAN.dwXSize = 0

MF_SCAN.dwYSize = 0

MF_SCAN.dwScanSize = 0

MF_SCAN.lpbScanData = NULL

MF_GET_PROCESS_DEFAULT MF_PROCESS.bActivationMode = MF_ACTIVATE_MODE_HIGH_SPEED

MF_PROCESS.bPaperType = MF_PAPER_TYPE_CHECK

MF_PROCESS.wSendPaperASF = 0

MF_PROCESS.dwStartWaitTime = 1000

MF_PROCESS.bSuccessStamp = MF_STAMP_DISABLE

MF_PROCESS.bPaperMisInsertionErrorSelect= MF_ERROR_SELECT_DETECT

MF_PROCESS.bPaperMisInsertionErrorEject= MF_EJECT_MAIN_POCKET

MF_PROCESS.bPaperMisInsertionStamp = MF_STAMP_DISABLE

MF_PROCESS.bPaperMisInsertionCancel = MF_CANCEL_DISABLE

MF_PROCESS.bNoiseErrorSelect = MF_ERROR_SELECT_DETECT

MF_PROCESS.bNoiseErrorEject = MF_EJECT_MAIN_POCKET

MF_PROCESS.bNoiseStamp = MF_STAMP_DISABLE

MF_PROCESS.bNoiseCancel = MF_CANCEL_ENABLE

MF_PROCESS.bDoubleFeedErrorSelect = MF_ERROR_SELECT_DETECT

MF_PROCESS.bDoubleFeedErrorEject = MF_EJECT_MAIN_POCKET

MF_PROCESS.bDoubleFeedStamp = MF_STAMP_DISABLE

MF_PROCESS.bDoubleFeedCancel = MF_CANCEL_DISABLE

MF_PROCESS.bBaddataErrorSelect = MF_ERROR_SELECT_DETECT

MF_PROCESS.bBaddataCount = 255

MF_PROCESS.bBaddataErrorEject = MF_EJECT_MAIN_POCKET

MF_PROCESS.bBaddataStamp = MF_STAMP_DISABLE

MF_PROCESS.bBaddataCancel = MF_CANCEL_DISABLE

MF_PROCESS.bNodataErrorSelect = MF_ERROR_SELECT_DETECT

MF_PROCESS.bNodataErrorEject = MF_EJECT_MAIN_POCKET

MF_PROCESS.bNodataStamp = MF_CANCEL_DISABLE

MF_PROCESS.bNodataCancel = MF_CANCEL_DISABLE

MF_PROCESS.bNearFullSelect = MF_NEARFULL_PERMIT

MF_PROCESS.bResultPartialData = MF_RESULT_NONE

MF_GET_PRINT_DEFAULT MF_PRINT01.blDummy = FALSE

MF_PRINT01.lpString[0] = NULL

MF_PRINT01.lpString[1] = NULL

MF_PRINT01.lpString[2] = NULL

Default Settings

4-68 Reference Rev.D

MF_GET_PRINT_DEFAULT MF_PRINT01.dwAttribute[0] = MF_PRINT_NO_ATTRIBUTE

MF_PRINT01.dwAttribute[1] = MF_PRINT_NO_ATTRIBUTE

MF_PRINT01.dwAttribute[2] = MF_PRINT_NO_ATTRIBUTE

MF_PRINT01.wFont[2] = MF_PRINT_FONT_A

MF_PRINT01.wFont[1] = MF_PRINT_FONT_A

MF_PRINT01.wFont[2] = MF_PRINT_FONT_A

MF_PRINT01.wFontSize[0] = MF_PRINT_FONT_W1_H1

MF_PRINT01.wFontSize[1] = MF_PRINT_FONT_W1_H1

MF_PRINT01.wFontSize[2] = MF_PRINT_FONT_W1_H1

MF_PRINT01.bSpeed = MF_PRINT_SPEED_HIGH

MF_PRINT01.bDirection = MF_PRINT_DIRECTION_DOUBLE

MF_PRINT01.dwEndorseType =
MF_PRINT_TYPE_ELECTRIC_ENDORSE_EXTEND

MF_GET_IQA_DEFAULT MF_IQA.bErrorSelect = MF_ERROR_SELECT_NODETECT

MF_IQA.bErrorEject = MF_EJECT_MAIN_POCKET

MF_IQA.bStamp = MF_STAMP_DISABLE

MF_IQA.bCancel = MF_CANCEL_DISABLE

MF_IQA.bImageFormat = EPS_BI_SCN_TIFF

MF_IQA.bColorDepth = EPS_BI_SCN_1BIT

MF_IQA.bThreshold = 0

MF_IQA.bColor = EPS_BI_SCN_MONOCHROME

MF_IQA.bExOption = EPS_BI_SCN_SHARP_CUSTOM2

MF_IQA.sResolution = MF_SCAN_DPI_DEFAULT

MF_IQA.bUndersize = MF_IQA_TEST_DISABLE

MF_IQA.bOversize = MF_IQA_TEST_DISABLE

MF_IQA.bMincompressed = MF_IQA_TEST_DISABLE

MF_IQA.bMaxcompressed = MF_IQA_TEST_DISABLE

MF_IQA.bFront_rear = MF_IQA_TEST_DISABLE

MF_IQA.bToolight = MF_IQA_TEST_DISABLE

MF_IQA.bToodark = MF_IQA_TEST_DISABLE

MF_IQA.bStreaks = MF_IQA_TEST_DISABLE

MF_IQA.bNoise = MF_IQA_TEST_DISABLE

MF_IQA.bFocus = MF_IQA_TEST_DISABLE

MF_IQA.bCorners = MF_IQA_TEST_DISABLE

MF_IQA.bEdges = MF_IQA_TEST_DISABLE

MF_IQA.bFraming = MF_IQA_TEST_DISABLE

Default Settings

Rev.D Reference 4-69

TM-S1000 API for EMEA Reference Guide

MF_GET_IQA_DEFAULT MF_IQA.bSkew = MF_IQA_TEST_DISABLE

MF_IQA.bCarbon = MF_IQA_TEST_DISABLE

MF_IQA.bPiggyback = MF_IQA_TEST_DISABLE

MF_GET_BARCODE_FRONT_DEFA
ULT
MF_GET_BARCODE_BACK_DEFA
ULT

MF_BARCODE.bErrorSelect = MF_ERROR_SELECT_NODETECT

MF_BARCODE.bErrorEject = MF_EJECT_MAIN_POCKET

MF_BARCODE.bStamp = MF_STAMP_DISABLE

MF_BARCODE.bCancel = MF_CANCEL_DISABLE

MF_BARCODE.dwTargetColor= MF_BARCODE_TARGET_COLOR_GRAY

MF_BARCODE.sResolution = MF_SCAN_DPI_DEFAULT

MF_BARCODE.dwInfoMode= 0

MF_BARCODE.stInfo[0].dwSymbolMask = 0

MF_BARCODE.stInfo[0].bDirection = MF_BARCODE_DIRECTION_ALL

MF_BARCODE.stInfo[0].bOrigin = MF_BARCODE_ORIGIN_TOP_LEFT

MF_BARCODE.stInfo[0].wStartX = 0

MF_BARCODE.stInfo[0].wStartY = 0

MF_BARCODE.stInfo[0].wEndX = 0

MF_BARCODE.stInfo[0].wEndY = 0

MF_BARCODE.stInfo[1].dwSymbolMask = 0

MF_BARCODE.stInfo[1].bDirection = MF_BARCODE_DIRECTION_ALL

MF_BARCODE.stInfo[1].bOrigin = MF_BARCODE_ORIGIN_TOP_LEFT

MF_BARCODE.stInfo[1].wStartX = 0

MF_BARCODE.stInfo[1].wStartY = 0

MF_BARCODE.stInfo[1].wEndX = 0

MF_BARCODE.stInfo[1].wEndY = 0

MF_BARCODE.stInfo[2].dwSymbolMask = 0

MF_BARCODE.stInfo[2].bDirection = MF_BARCODE_DIRECTION_ALL

MF_BARCODE.stInfo[2].bOrigin = MF_BARCODE_ORIGIN_TOP_LEFT

MF_BARCODE.stInfo[2].wStartX = 0

MF_BARCODE.stInfo[0].wStartY = 0

MF_BARCODE.stInfo[2].wEndX = 0

MF_BARCODE.stInfo[2].wEndY = 0

Default Settings

4-70 Reference Rev.D

Note

Before invoking this API, execute either of BiSCNMICRSetStatusBackFunction.

MF_GET_BARCODE_FRONT_DEFA
ULT
MF_GET_BARCODE_BACK_DEFA
ULT

MF_BARCODE.stInfo[3].dwSymbolMask = 0

MF_BARCODE.stInfo[3].bDirection = MF_BARCODE_DIRECTION_ALL

MF_BARCODE.stInfo[3].bOrigin = MF_BARCODE_ORIGIN_TOP_LEFT

MF_BARCODE.stInfo[3].wStartX = 0

MF_BARCODE.stInfo[3].wStartY = 0

MF_BARCODE.stInfo[3].wEndX = 0

MF_BARCODE.stInfo[3].wEndY = 0

MF_BARCODE.stInfo[4].dwSymbolMask = 0

MF_BARCODE.stInfo[4].bDirection = MF_BARCODE_DIRECTION_ALL

MF_BARCODE.stInfo[4].bOrigin = MF_BARCODE_ORIGIN_TOP_LEFT

MF_BARCODE.stInfo[4].wStartX = 0

MF_BARCODE.stInfo[4].wStartY = 0

MF_BARCODE.stInfo[4].wEndX = 0

MF_BARCODE.stInfo[4].wEndY = 0

Default Settings

Rev.D Reference 4-71

TM-S1000 API for EMEA Reference Guide

BiSCNMICRFunctionPostPrint

Scans images, and reads MICR characters.

Syntax

 int BiSCNMICRFunctionPostPrint (int nHandle, LPVOID lpvStruct, WORD wFunction)

Argument

nHandle: Specifies the handle. This is an INT type.

lpvStruct: Specifies the address of the parameter structure specified by each unit.

wFunction: Specifies the execution content for this API. For the read settings, specifying
MF_SET_MICR_PARAM causes notification to be posted to the TM-S1000 API
upon the execution of this function. If, after notification has been posted, there is a
change to the members of the structure, notification is posted again using this
function. To use the definition names for this API, include them in the provided
vendor files.

lpvStruct Supplemental explanation
Refer to the following for an explanation of the lpvStruct structure.

The following values are not used by this API.

<MF_BASE01 Structure>

•dwNotifyType, uNotifyHandle
Notification of the read status of this API is posted by the handler
registered in BiSCNMICRSetStatusBackFunction/
BiSCNMICRSetStatusBackWnd.

•hProgressWnd
This API does not post notification of progress status.

<MF_MICR Structure>

•bMicOcrSelect, blParsing
Used when calling BiGetMicrText.

•No value is set in any of bStatus, bDetail, szMicrStr, stOcrReliableInfo,
szAccountNumber, szAmount, szBankNumber, szSerialNumber,
szEPC, szTransitNumber, lCheckType, or lCountryCode. A value is set
when an MICR (OCR recognition) character string is acquired using
BiGetMicrText.

Structure Page

MF_BASE01 4-138

MF_MICR 4-142

MF_SCAN 4-146

MF_PRINT01 4-149

MF_PROCESS 4-152

4-72 Reference Rev.D

<MF_SCAN Structure>

•wImageID
Calls BiSetTransactionNumber and sets a transaction number (ID).

•No value is set in any of bStatus, bDetail, dwXSize, dwYSize, dwScanSize,
or lpbScanData. A value is set when a scanned image is acquired using
BiGetScanImage.

Explanation

For SCAN/MICR/transaction printing, use a structure to specify the parameters of the
functions you wish to use and call them using this API. MF_SET_BASE_PARAM must always
be set. When a structure is set again, change the members of the structure and then call this API
again by specifying MF_SET_xxxx_PARAM. The structures contain all the results output by the
TM-S1000 API, up until the execution of BiCloseMonPrinter.
By specifying MF_EXEC in the third parameter, the specified function is executed .
When MF_CONTINUE, MF_MICR_RETRANS, MF_SCAN_FRONT_RETRANS, and
MF_SCAN_BACK_RETRANS are specified in the third parameter, ERR_NOT_SUPPORT is
returned.
Because the return value is set in the structure, the structure must be deleted. In such a case, call
MF_CLEAR_xxxx_PARAM.
After the processing has been returned from the handler that performs
MF_DATARECEIVE_DONE notification processing to the TM-S1000 API, E-endorse is
executed.

Processing status list

Refer to “BiSCNMICRFunctionContinuously” on page 4-58.

Note

Refer to “BiSCNMICRFunctionContinuously” on page 4-58.

Return value

Refer to “BiSCNMICRFunctionContinuously” on page 4-58.

Rev.D Reference 4-73

TM-S1000 API for EMEA Reference Guide

BiSCNMICRSetStatusBackFunction

Registers callback functions for notification of the reading status.

Note
This is unavailable when the development environment is VB.

Syntax

int BiSCNMICRSetStatusBackFunction
(int nHandle, int (CALLBACK EXPORT* pScnMicrCB)(DWORD dwTransactionNumber,
WORD wMainStatus, WORD wSubStatus, LPSTR lpcPortName))

Argument

nHandle: Specifies the handle. This is an INT type.

pScnMicrCB: Specifies the address of the callback functions for notification of the
BiSCNMICRFunctionContinuously scanning processing status. This is a
CALLBACK EXPORT.

Callback function parameters

dwTransactionNumber: The transaction number (ID) corresponding to the check paper of the
processing status source. This is a DWORD type.

wMainStatus: The main status of the processing status. This is a WORD type.

wSubStatus: The sub status of the processing status. This is a WORD type.

lpcPortName: The memory address where the port name of the callback invoker is
saved. This is an LPSTR type.

Return value

Explanation

Registers the address of the callback functions for notification of the
BiSCNMICRFunctionContinuously / BiSCNMICRFunctionPostPrint scanning processing
status. When the processing status of the check paper changes, the values are saved in
dwTransactionNumber, wMainStatus, and wSubStatus, and the registered callback function is
invoked. In this case, the port name is saved in lpcPortName in order to distinguish the callback
invoker. For details of the processing status, refer to processing status in
“BiSCNMICRFunctionContinuously” on page 4-58.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-74 Reference Rev.D

BiSCNMICRSetStatusBackWnd

Scans images, and reads MICR characters.

Syntax

 int BiSCNMICRSetStatusBackWnd (int nHandle, long hWnd,
LPDWORD lpdwTransactionNumber,
LPWORD lpwMainStatus, LPWORD lpwSubStatus)

Argument

nHandle: Specifies the handle. This is an INT type.

hWnd: Specifies the window handle of a button that sends a click event to
issue notification of the status of BiSCNMICRFunctionContinuously/
BiSCNMICRFunctionPostPrint processing.

lpdwTransactionNumber: Specifies the memory address containing the transaction number
(ID).

lpwMainStatus: Specifies the memory address containing the main status for the
processing.

lpwSubStatus: Specifies the memory address containing the sub status for the
processing.

Return value

Explanation

Registers the memory address containing the value used to post notification of the handle of the
button used to send a click event to indicate the processing status of
BiSCNMICRFunctionContinuously/BiSCNMICRFunctionPostPrint. Do not delete the memory
address registered with this API until the registration made with BiSCNMICRCancelStatusBack
has been released. Whenever there is a change in the check sheet processing status, a value is
saved to lpdwTransactionNumber, lpwMainStatus, and lpwSubStatus.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-75

TM-S1000 API for EMEA Reference Guide

BiSCNMICRCancelStatusBack

Cancels the reading status notification request registered using either of
BiSCNMICRSetStatusBackFunction.

Syntax

int BiSCNMICRCancelStatusBack(int nHandle)

Argument

nHandle: Specifies the handle. This is an INT type.

Return value

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

4-76 Reference Rev.D

BiSetNumberOfDocuments

Specifies the number of docments to read using BiSCNMICRFunctionContinuously.

Syntax

int BiSetNumberOfDocuments (int nHandle, BYTE bNumber)

Argument

nHandle: Specifies the handle. This is an INT type.

bNumber: Specifies the number (0 to 100) of documents to read.
This is a BYTE type. The initial value is 0.

Return value

Explanation

If 0 is specified for bNumber, all the documents set in the ASF (Auto Sheet Feeder) are read.
If 1 or larger is specified for bNumber, reading ends when reading of the specified number of
documents is complete. The setting made using this API is valid until BiCloseMonPrinter is run.
If reading of the documents set in the ASF is completed before reading the number of
documents specified using this API, the error code (ERR_LESS_CHECKS) is sent, indicating that
the specified number of documents have not been read to SubStatus of the reading status
MF_FUNCTION_DONE.

Note

The setting made using this API becomes valid when MF_PROCESS.bActivationMode of
BiSCNMICRFunctionContinuously is set to MF_ACTIVATE_MODE_HIGH_SPEED. However,
if MF_ACTIVATE_MODE_CONFIRMATION is set, the setting made using this API is not valid.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-1110 ERR_LESS_CHECKS The number of checks specified for BiSetNumberOfDocuments cannot
be read.

Rev.D Reference 4-77

TM-S1000 API for EMEA Reference Guide

BiGetMicrText

Gets MICR text or OCR text.

Syntax

int BiGetMicrText (int nHandle, DWORD dwTransactionNumber, LPMF_MICR ptMicr)

Argument

nHandle: Specifies the handle. This is an INT type.

dwTransactionNumber: Specifies the transaction number (ID) for the MICR text acquired.
This is a DWORD type.

ptMicr: Specifies the memory address of the MF_MICR structure.
This is an LPMF_MICR type.

Return value

Explanation

Gets the MICR text read with BiSCNMICRFunctionContinuously. After the reading status
MF_DATARECEIVE_DONE notification, the reading results are saved in the various
parameters of the MF_MICR structure by specifying the relevant transaction number (ID) in
dwTransactionNumber. When getting the MICR reading result, specify MF_MICR_USE_MICR
in bMicOcrSelect of the MF_MICR structure, when getting the OCR reading result, specify
MF_MICR_USE_OCR, and when getting the logical multiplication of the MICR and OCR
reading results, specify MF_MICR_USE_MICR | MF_MICR_USE_OCR.
The MICR/OCR reading result is set to szMicrStr of MF_MICR structure.

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

-90 ERR_PARAM Parameter error

-140 ERR_BUFFER_OVER_FLOW Buffer overflow error

-220 ERR_NOT_FOUND No data error

-440 ERR_MICR Printer failed in MICR reading

-470 ERR_NOT_EXEC Process not being executed

-1040 ERR_MICR_NODATA MICR data is not existing

-1050 ERR_MICR_BADDATA MICR data is not able to recognize

-1060 ERR_MICR_PARSE MICR data can not be parsed

-1070 ERR_MICR_NOISE Noise error has occurred during MICR reading

4-78 Reference Rev.D

Information on reliability of the read characters is set to stOcrReliableInfo of MF_MICR
structure.
Specifying MF_MICR_USE_MICR | MF_MICR_USE_OCR for the bMicOcrSelect makes a
comparison between the reading result of MICR and that of OCR, and if any difference is found,
“?” will be returned.

Note

❏ The interval during which the MICR reading result and OCR reading result corresponding
to the transaction number (ID) can be acquired is from MF_DATARECEIVE_DONE
notification to MF_CHECKPAPER_PROCESS_DONE notification.
When the process is returned from the MF_CHECKPAPER_PROCESS_DONE notification
handler to the API, the MICR reading result/OCR reading result saved by the API is
discarded.

❏ MICR magnetic waveform data is sent from the device when starting the reading. The
position information is acquired from the magnetic waveform data. Therefore, if the position
information could not be acquired from the magnetic waveform data when
MF_MICR_USE_OCR has been specified to bMicOcrSelect, the OCR recognition cannot be
made.

❏ When the font to read MICR (MF_MICR.bFont) is CMC7, the OCR recognition result
(MF_OCR_AB.stOcrReliableInfo) cannot be obtained. The relation between bMicOcrSelect
and bFont in MF_MICR structure for OCR reading process is described below.

❏ Parsing can be used when the font to read MICR (MF_MICR.bFont) is E13B. When CMC7 is
used, after calling BiGetMicrText, ERR_MICR_PARSE is returned as a return value.

bFont

bMicOcrSelect

MF_MICR_USE_MICR MF_MICR_USE_OCR MF_MICR_USE_MICR |
MF_MICR_USE_OCR

MF_MICR_FONT_E13B
MICR magnetic

waveform + OCR
recognition

OCR recognition
MICR magnetic

waveform + OCR
recognition

MF_MICR_FONT_CMC7 MICR magnetic
waveform

Error
(ERR_MICR_NODATA)

Error
(ERR_MICR_NODATA)

Rev.D Reference 4-79

TM-S1000 API for EMEA Reference Guide

BiMICRClearSpaces

Clears spaces included in MICR data obtained using BiGetMicrText.

Syntax

int BiMICRClearSpaces (int nHandle, BYTE bClearSpace)

Argument

nHandle: Specifies the handle. This is an INT type.

bClearSpace: Specifies clearance of spaces in MICR data. Specify the following constants.
The default value is CLEAR_SPACE_DISABLE. This is a BYTE type.

Return value

Explanation

The MICR data to be cleared is the following members in MF_MICR structure.

The above settings are valid from the point when BiGetMicrText is invoked after invoking this
API until BiCloseMonPrinter is invoked.

Constant Description

CLEAR_SPACE_DISABLE Does not clear spaces.

CLEAR_SPACE_ENABLE Clears spaces.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

Member Description

szMicrStr MICR character string

stOcrReliableInfo Information on reliability of MICR character recognition

4-80 Reference Rev.D

BiSetOcrABAreaOrigin

Specifies the origin of the OCR area for the MF_OCR_AB structure.

Syntax

int BiSetOcrABAreaOrigin (int nHandle, BYTE bOrigin)

Argument

nHandle: Specifies the handle. This is an INT type.

bOrigin: Specifies the origin of the OCR area. Specify the following values.
The default value is OCR_ORIGIN_TOP_LEFT. This is a BYTE type.

Return value

Constant Description

OCR_ORIGIN_TOP_LEFT Sets the origin to the top left corner in relation to the
document insertion direction.

OCR_ORIGIN_BOTTOM_LEFT Sets the origin to the bottom left corner in relation to the
document insertion point.

OCR_ORIGIN_TOP_RIGHT Sets the origin to the top right corner in relation to the
document insertion point.

OCR_ORIGIN_BOTTOM_RIGHT Sets the origin to the bottom right corner in relation to the
document insertion point.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

Rev.D Reference 4-81

TM-S1000 API for EMEA Reference Guide

Explanation

The original specified using this API is valid until BiCloseMonPrinter is invoked.

See the following illustration for defining ranges with different origins.

wStartY

wStartX Origin

12345678

OCR_ORIGIN_BOTTOM_LEFT

Paper insertion direction

(wEndX, wEndY)

wStartY

wStartX Origin

12345678

OR_ORIGIN_TOP_LEFT

(wEndX, wEndY)

wStartY

wStartX Origin

12345678

OCR_ORIGIN_TOP_RIGHT

(wEndX, wEndY)

wStartY

wStartX Origin

12345678

OCR_ORIGIN_BOTTOM_RIGHT

(wEndX, wEndY)

4-82 Reference Rev.D

BiGetOcrABText

Performs the OCR recognition for the OCR-A font or the OCR-B font and acquires the result.

Note
This API cannot be used when an image editing software is used to edit the image created by the
driver.

Syntax

int BiGetOcrABText
(int nHandle, DWORD dwTransactionNumber, BYTE bImageSource, LPCSTR szFileName,
LPMF_OCR_AB ptOcrAB)

Argument

nHandle: Specifies the handle. This is an INT type.

dwTransactionNumber: Specify a transaction number (ID) targeted for the OCR recognition. This
is a DWORD type.

bImageSource: Specify an image targeted for the OCR recognition. One of the following
values can be specified. This is a BYTE type.

szFileName: Specify an image file name targeted for the OCR recognition. This is an
LPCSTR type.

ptOcrAB: Specify the memory address of the MF_OCR_AB structure. For the
MF_OCR_AB structure, refer to “MF_OCR_AB” on page 4-162. This is an
LPMF_OCR_AB type.

Return value

Constant Description

OCR_SOURCE_TRANSACTION_NUMBER For an image file stored in the driver.

OCR_SOURCE_IMAGE_FILE For an image file saved by the driver.

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-220 ERR_NOT_FOUND No data error

-230 ERR_IMAGE_FILEOPEN Open failure

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-1040 ERR_MICR_NODATA MICR data is not existing

Rev.D Reference 4-83

TM-S1000 API for EMEA Reference Guide

Explanation

Performs the OCR recognition for the OCR-A font or the OCR-B font and acquires the result.
Necessary conditions for the OCR recognition other than the targeted images are set to the
MF_OCR_AB structure. The OCR recognition results are stored in the OUT attribute parameter
of the MF_OCR_AB structure.

❏ When OCR_SOURCE_TRANSACTION_NUMBER is specified to bImageSource, images
that are read immediately before and stored in the driver can be targeted for the OCR
recognition. In this case, szFileName is ignored. After MF_DATARECEIVE_DONE is
notified, the recognition result is stored in the OUT attribute parameter of the MF_OCR_AB
structure by specifying the pertinent transaction number to dwTransactionNumber.

❏ When OCR_SOURCE_IMAGE_FILE is specified to bImageSource, the image files saved by
the driver are targeted for OCR recognition. In this case, dwTransactionNumber is ignored.

Whenever image files exist it is OK to execute this API. The image files must meet the following
conditions.

❏ Saved when either EPS_BI_SCN_BITMAP or EPS_BI_SCN_TIFF256 is specified with
BiSCNSetImageFormat.

❏ Saved when EPS_BI_SCN_8BIT is specified to bColorDept parameter with
bBiSCNSetImageQuality.

❏ Saved when EPS_BI_SCN_MANUAL is specified to bExOption parameter with
BiSCNSetImageQuality.

Note

When OCR_SOURCE_TRANSACTION_NUMBER is specified to bImageSource, the period that
the OCR recognition result for the transaction number (ID) can be acquired is from when
MF_DATARECEIVE_DONE is notified to when MF_CHECKPAPER_PROCESS_DONE is
notified.

The OCR recognition results that TM-S1000 API has acquired are discarded when the process is
returned to TM-S1000 API from the MF_CHECKPAPER_PROCESS_DONE notification handler.

4-84 Reference Rev.D

BiGetScanImage

Gets the scan image.

Syntax

int BiGetScanImage(int nHandle, DWORD dwTransactionNumber, LPMF_SCAN ptScan)

Argument

nHandle: Specifies the handle. This is an INT type.

dwTransactionNumber: Specifies the transaction number (ID) for the scan image acquired. This is
a DWORD type.

ptScan: Specifies the memory address of the MF_SCAN structure. This is an
LPMF_SCAN type.

Return value

Explanation

Gets the scan image scanned with BiSCNMICRFunctionContinuously /
BiSCNMICRFunctionPostPrint. After the scanning status MF_DATARECEIVE_DONE
notification, the scanning results are saved in the various parameters of the MF_SCAN structure
by specifying the relevant transaction number (ID) in dwTransactionNumber. When
configuring a valid value for sResolution, bAddInfoDataSize and pAddInfoData that are part of
MF_SCAN structure, the image which these values refer to will be stored. To get the front side
scanning results, specify MF_SCAN_FACE_FRONT with BiSCNSelectScanFace, then execute
this API. To get the back side scanning results, specify MF_SCAN_FACE_BACK with
BiSCNSelectScanFace, then execute this API.

Note

❏ The BiSCNSetImageQuality, BiSCNSetImageFormat, and BiSCNScanArea setting values are
reflected in the scanning result when BiSCNMICRFunctionContinuously is executed. Set
BiSCNImageQuality, and BiSCNSetImageFormat before executing
BiSCNMICRFunctionContinuously scanning.

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-70 ERR_TIMEOUT A time out error occurred

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

-90 ERR_PARAM Parameter error

-220 ERR_NOT_FOUND No data error

-450 ERR_SCAN Printer failed in image scanning

-470 ERR_NOT_EXEC Process not being executed

-1080 ERR_SCN_COMPRESS Scan image data compressing error

Rev.D Reference 4-85

TM-S1000 API for EMEA Reference Guide

❏ When this API is executed, the scanned image address is set in lpvScanData of the
MF_SCAN structure. This memory is obtained automatically by the API, and it must not be
discarded. Therefore, it is necessary for the application to discard it at the appropriate time.
To discard this memory, use the application to specify the address of this memory in the
GlobalFree function of the WindowsAPI.

❏ Be sure to configure a valid value for bAddInfoDataSize and pAddInfoData that are part of
MF_SCAN structure.

❏ The interval during which the scan image corresponding to the transaction number (ID) can
be acquired is from MF_DATARECEIVE_DONE notification to
MF_CHECKPAPER_PROCESS_DONE notification. When the process is returned from the
MF_CHECKPAPER_PROCESS_DONE notification handler to the API, the scan image saved
by the API is discarded.

4-86 Reference Rev.D

BiGetBarcodeData

Decodes a barcode from the scanned image data, and obtains the result.

Syntax

int BiGetBarcodeData (int nHandle, DWORD dwTransactionNumber,
LPMF_BARCODE ptBarcode)

Argument

nHandle: Specifies the handle. This is an INT type.

dwTransactionNumber: Specifies a transaction number (ID) for the BARCODE decode.
This is a DWORD type.

ptBarcode: Specifies the memory address of the MF_BARCODE structure.
This is an LPMF_BARCODE type.

Return value

Explanation

Decodes a barcode from the scanned image data, and obtains the result.
The result of barcode decode is set in the MF_BARCODE structure. For the details, refer to
“MF_BARCODE” on page 4-176.
To decode a barcode, specify the front/back side with BiSCNSelectScanFace.

Note

❏ The decoding result of BARCODE corresponding to the transaction number (ID) is
obtainable from the processing status of MF_DATARECEIVE_DONE to the notification of
MF_CHECKPAPER_PROCESS_DONE. The decoding result of BARCODE kept by Status
API is discarded when the handler of MF_CHECKPAPER_PROCESS_DONE sends back the
processing to Status API.

❏ When decoding multiple barcodes at the same time, the correct result cannot be obtained if
the barcodes other than given below are decoded.

• Barcode symbols are the same

• Barcodes are lined in the horizontal direction

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-220 ERR_NOT_FOUND No data error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-1130 ERR_BARCODE_NODATA Barcode cannot be detected.

Rev.D Reference 4-87

TM-S1000 API for EMEA Reference Guide

❏ This API is MF_SET_BARCODE_FRONT_PARAM or
MF_SET_BARCODE_BACK_PARAM, and can obtain the decoding result different from the
MF_BARCODE structure which was set earlier. In such a case, where to eject or the flanking
process is set according to the current setting. The decoding result can be obtained even if
the MF_BARCODE structure is not set earlier.

4-88 Reference Rev.D

BiDecodeBarcode

Decodes a barcode from the specified image file, and obtains the result.

Syntax

int BiDecodeBarcode (int nHandle, LPCSTR szFileName, LPMF_BARCODE ptBarcode)

Argument

nHandle: Specifies the handle. This is an INT type.

szFileName: Specifies the name of the image file (file pass). This is a LPCSTR type.

ptBarcode: Specifies the memory address of the MF_BARCODE structure.
This is an LPMF_BARCODE type.

Return value

Explanation

Decodes a barcode from the image file, and obtains the result.
The result of barcode decode is set in the MF_BARCODE structure. For the details, refer to
“MF_BARCODE” on page 4-176.

Note

❏ Make sure to use the image file created in the following way.

• Saved file with EPS_BI_SCN_BITMAP or EPS_BI_SCN_TIFF256 specified in
BiSCNSetImageFormat

• Saved file with EPS_BI_SCN_8BIT to bColorDepth specified in BiSCNSetImageQuality

• Saved file with EPS_BI_SCN_SHARP to bExOption specified in BiSCNSetImageQuality

❏ When decoding multiple barcodes at the same time, the correct result cannot be obtained if
the barcodes other than given below are decoded.

• Barcode symbols are the same

• Barcodes are lined in the horizontal direction

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-230 ERR_IMAGE_FILEOPEN Open failure

-240 ERR_IMAGE_UNKNOWNF
ORMAT

Format injustice

-1130 ERR_BARCODE_NODATA Barcode cannot be detected.

Rev.D Reference 4-89

TM-S1000 API for EMEA Reference Guide

BiDecodeBarcodeMemory

Decodes the barcode from the image data on the application memory, and obtains the result.

Syntax

int BiDecodeBarcodeMemory (int nHandle, LPBYTE lpImageBuffer, DWORD dwBufferSize,
LPMF_BARCODE ptBarcode)

Argument

nHandle: Specifies the handle. This is an INT type.

lpImageBuffer: Specifies the memory of image data. This is a LPBYTE type.

dwBufferSize: Specifies the memory size of specified image data in lpImageBuffer. This is
a DWORD type.

ptBarcode: Specifies the memory address of the MF_BARCODE structure.
This is an LPMF_BARCODE type.

Return value

Explanation

The result of barcode decode is set in the MF_BARCODE structure. For the details, refer to
“MF_BARCODE” on page 4-176.

Note

❏ Make sure to use the image data which was created as following ways.

• Created data with EPS_BI_SCN_BITMAP or EPS_BI_SCN_TIFF256 specified in
BiSCNSetImageFormat

• Created data with EPS_BI_SCN_8BIT to bColorDepth specified in
BiSCNSetImageQuality

• Created data with EPS_BI_SCN_SHARP to bExOption specified in
BiSCNSetImageQuality

❏ When decoding multiple barcodes at the same time, the correct result cannot be obtained if
the barcodes other than given below are decoded.

• Barcode symbols are the same

• Barcodes are lined in the horizontal direction

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-240 ERR_IMAGE_UNKNOWNF
ORMAT

Format injustice

-1130 ERR_BARCODE_NODATA Barcode cannot be detected.

4-90 Reference Rev.D

BiGetTransactionNumber

Gets the currently set transaction number.

Syntax

int BiGetTransactionNumber (int nHandle, LPDWORD lpdwTransactionNumber)

Argument

nHandle: Specifies the handle. This is an INT type.

lpdwTransactionNumber: Specifies the memory address where the transaction number (ID) is
saved. This is an LPDWORD type.

Return value

Note

❏ The transaction number (ID) acquired by this API is the value used for the next scanning
process, and it cannot be used as a parameter for BiGetMicrText and BiGetScanImage.

❏ When getting MICR text or a scan image with BiGetMicrText and BiGetScanImage, use the
transaction number (ID) provided with the scanning status MF_DATARECEIVE_DONE or
MF_CHECKPAPER_PROCESS_DONE.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-91

TM-S1000 API for EMEA Reference Guide

BiSetTransactionNumber

Sets the transaction number.

Syntax

int BiSetTransactionNumber (int nHandle, DWORD dwTransactionNumber)

Argument

nHandle: Specifies the handle. This is an INT type.

dwTransactionNumber: Specifies the transaction number (ID) to set. The range of values that can
be set is from 0 to 999999999. This is a DWORD type.

Return value

Explanation

Sets the transaction number (ID) used for sequential printing,
BiSCNMICRFunctionContinuously scanning status notification. After
MF_CHECKPAPER_PROCESS_START notification with BiSCNMICRFunctionContinuously, 1
is added to the setting value. If MF_CHECKPAPER_PROCESS_START notification is performed
at the maximum value of 999999999, the setting value returns to 0.

The transaction number (ID) default value is set to 1.

<About sequential printing function>
It is the function that specifies a format for transaction number (ID) printing. It prints using the
format of the keyword surrounded by <>. If the keyword surrounded by <> is specified to the
endorse printing character string before the reading process, character string is made using the
value acquired by BiGetTransactionNumber. The character string is valid until either
BiBufferedPrint MF_PRT_CLEAR or BiBufferedPrint invokes BiPrintText in the MF_PRT_EXEC
status.
If the keyword surrounded by <> is specified to the endorse printing character string during the
MF_DATARECEIVE_DONE callback, character string is made using the transaction ID for the
check paper. This character string is cleared after the MF_DATARECEIVE_DONE callback is
notified.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-92 Reference Rev.D

There are three patterns for the keywords that can be specified for the sequential printing as
follows:
<0000>: The number of "0"s indicates the number of columns to be printed. The number of
columns that can be set is from 1 to 9. If the transaction number set is less than the number of the
columns, 0 is added automatically.

<xxxx>: The number of "x"s indicates the number of columns to be printed. The number of the
columns that can be set is from 1 to 9. If the transaction number set is less than the number of the
columns, a space is added automatically.

<llll>: (small letter of "L" in one-byte): The number of "l"s indicates the number of columns to be
printed. The number of the columns that can be set is from 1 to 9. If the transaction number set is
less than the number of the columns, the columns are left aligned automatically.

* "<" and ">" are used as special symbols. When printing "<" or ">", specify &< or &>
respectively.

* If a keyword is specified that is outside the rule mentioned above, for example <00xxabc> (0
and x are mixed, the characters other than 0 or x are included), the character string surrounded
by "<" and ">" is printed as a usual character string.

Note

With sequential printing, if a number of digits n smaller than the transaction number (ID)
currently set is specified, the latter n digits of the transaction number (ID) are actually printed.

Example:
When the transaction number (ID) currently set is 12345 and the sequential printing is specified
with 4-column <xxxx>, “2345” is actually printed.

Rev.D Reference 4-93

TM-S1000 API for EMEA Reference Guide

BiGetPrintStation

Gets the set station for printing.

Syntax

int BiGetPrintStation (int nHandle, LPWORD lpwStation)

Argument

nHandle: Specifies the handle. This is an INT type.

lpwStation: Specifies the memory address where the station for printing is saved. This is an
LPWORD type.

Return value

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-94 Reference Rev.D

BiSetPrintStation

Sets the station for printing.

Syntax

int BiSetPrintStation (int nHandle, WORD wStation)

Argument

nHandle: Specifies the handle. This is an INT type.

wStation: Specifies the station for printing. One of the following values can be set. This is a
WORD type.

Return value

Explanation

Specifies the BiPrintText, and BiPrintImage stations for printing.

Constant Description

MF_ST_E_ENDORSEMENT Sets electronic endorsement as the station for
printing.

MF_ST_E_ENDORSEMENT_BACK Same as MF_ST_E_ENDORSEMENT.

MF_ST_E_ENDORSEMENT_FRONT Sets electronic endorsement to front side as the
station for printing.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-95

TM-S1000 API for EMEA Reference Guide

BiPrintText

Executes test printing.

Syntax

int BiPrintText (int nHandle, LPSTR szText, MF_DECORATE tDecorate)

Argument

nHandle: Specifies the handle. This is an INT type.

szText: Specifies the memory address where the text for printing is saved. This is an LPSTR
type.

tDecorate: Specifies the DECORATE structure where the text decoration information is saved.
This is a MF_DECORATE type.
DECORATE structure
struct {
DWORD dwAttribute;
WORD wFont;
LPSTR szFontName;
WORD wFontSize;
} MF_DECORATE, *LPMF_DECORATE;

dwAttribute: Specifies the text attributes. The following values can be set individually or in
multiples. If no attribute is specified, specify MF_PRINT_NO_ATTRIBUTE. This is
a DWORD type.

wFont: Specifies the type of font. The selectable value is as follows. This is a WORD type.

szFontName: When MF_PRINT_SYSTEMFONT is specified with wFont, any system font can
be used for printing by specifying the font name in this parameter. If the specified
font is not present, printing is performed using the system default font. This is an
LPSTR type.

Constant Description

MF_PRINT_BOLD Prints in bold

MF_PRINT_UNDERLINE_1 Adds 1-dot wide underlining

MF_PRINT_UNDERLINE_2 Adds 2-dot wide underlining

MF_PRINT_REVERSEVIDEO Prints reversed

MF_PRINT_BLACK Prints in the 1st color (normally black)
(MF_PRINT_1ST_COLOR is the same)

MF_PRINT_COLOR Prints in the 2nd color
(MF_PRINT_2ND_COLOR is the same)

MF_PRINT_MIXED Prints characters in a mixture of the
1st and 2nd color.

Constant Description

MF_PRINT_SYSTEMFONT Prints with the system font

4-96 Reference Rev.D

wFontSize: Specifies the font size. When MF_PRINT_FONT_A / MF_PRINT_FONT_B is
specified in wFont, one of the following values can be set. When
MF_PRINT_SYSTEMFONT is specified in wFont, point units can be specified.
Many system fonts support 8 to 72 pt. If the specified size does not agree, printing
is performed using the nearest size font. Small sized characters are hard to read at
100/120 dpi. Arial font, size 15 point or larger is recommended.This is a WORD
type.

Return value

Explanation

Prints text with the attributes specified with the MF_DECORATE structure, from the station
specified in BiSetPrintStation.

Note

❏ When MF_PRINT_SYSTEMFONT is specified to wFont of the MF_DECORATE structure,
the thickness of an underline depends on the font size. Therefore, even if
MF_PRINT_UNDERLINE_1 or MF_PRINT_UNDERLINE_2 is specified, the thickness of the
underlines is the same.

❏ Even if MF_PRINT_COLOR, MF_PRINT_MIXED is specified to dwAttribute of the
MF_DECORATE structure, the character string printed is MF_PRINT_BLACK.

Constant Description

MF_PRINT_FONT_W1_H1 Prints at width x1 and height x1 size.

MF_PRINT_FONT_W1_H2 Prints at width x1 and height x2 (double height) size.

MF_PRINT_FONT_W2_H1 Prints at width x2 and height x1 (double width) size.

MF_PRINT_FONT_W2_H2 Prints at width x2 and height x2 (double height and width) size.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-80 ERR_ACCESS Reading/writing with the device is not possible (printing in progress)

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

Rev.D Reference 4-97

TM-S1000 API for EMEA Reference Guide

BiPrintImage

Executes image printing from a file.

Syntax

int BiPrintImage (int nHandle, LPSTR pFileName)

Argument

nHandle: Specifies the handle. This is an INT type.

pFileName: Specifies the location of the image file to print with a full path. This is an LPSTR
type. Image file that can be specified are below.

•BMP format (Uncompressed image data only)

•JPEG format (Baseline DCT, Progressive)

•TIFF format
(CCITT Group 3/Group 4 compressed data, uncompressed data only)

The following formats are not supported.

•BMP format (Compressed image data)

•JPEG format (Lossless compression, hierarchical coding)

•TIFF format (Palette color, PackBits/JPEG/LZW/ZIP compression)

Return value

Explanation

Prints images from the station specified in BiSetPrintStation.

Prints after enlarging or reducing in accordance with the print size specified in BiSetPrintSize.

NOTE

❏ If the image file specified with pFileName does not exist, the ERR_IMAGE_FILEOPEN error
is returned. Furthermore, if the file specified in pFileName does not meet the rule, the
ERR_IMAGE_UNKNOWNFORMAT error is returned.

❏ If the image size exceeds 4096*4096, an error of ERR_IMAGE_UNKNOWNFORMAT is
returned even when the image format meets the supported format.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-230 ERR_IMAGE_FILEOPEN Open failure

-240 ERR_IMAGE_UNKNOWNF
ORMAT

Format injustice

-1000 ERR_SIZE Size excess error

4-98 Reference Rev.D

BiPrintMemoryImage

Executes image printing from memory.

Syntax

int BiPrintMemoryImage(int nHandle, LPBYTE lpbImageData, DWORD dwDataSize)

Argument

nHandle: Specifies the handle. This is an INT type.

lpbImageData: Specifies image data for printing. Image files that can be specified are below.
This is an LPBYTE type.

•BMP format (Uncompressed image data only)

•JPEG format (Baseline DCT, Progressive)

•TIFF format
(CCITT Group 3/Group 4 compressed data, uncompressed data only)

The following formats are not supported.

•BMP format (Compressed image data)

•JPEG format (Lossless compression, hierarchical coding)

•TIFF format (Palette color, PackBits/JPEG/LZW/ZIP compression)

dwDataSize: Specifies a size of image data to be printed. This is a DWORD type.

Return value

Explanation

Executes image printing for the station specified with BiSetPrintStation.
Prints after enlarging or reducing in accordance with the print size specified with BiSetPrintSize.

NOTE

❏ If file data that does not meet the rule is specified to lpbImageData, the
ERR_IMAGE_UNKNOWNFORMAT error is returned.

❏ If the image size exceeds 4096*4096, an error of ERR_IMAGE_UNKNOWNFORMAT is
returned even when the image format meets the supported format.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-80 ERR_ACCESS Reading/writing with the device is not possible

-90 ERR_PARAM Parameter error

-240 ERR_IMAGE_UNKNOWNF
ORMAT

Format injustice

-1000 ERR_SIZE Size excess error

Rev.D Reference 4-99

TM-S1000 API for EMEA Reference Guide

BiGetPrintSize

Gets the print size set in the station specified in BiSetPrintStation.

Syntax

int BiGetPrintSize (int nHandle, LPWORD lpwWidth, LPWORD lpwHeight)

Argument

nHandle: Specifies the handle. This is an INT type.

lpwWidth: Specifies the memory address where the horizontal print size is saved. This is an
LPWORD type.

lpwHeight: Specifies the memory address where the vertical print size is saved. This is an
LPWORD type.

Return value

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-100 Reference Rev.D

BiSetPrintSize

Sets the print size.

Syntax

int BiSetPrintSize (int nHandle, WORD wWidth, WORD wHeight)

Argument

nHandle: Specifies the handle. This is an INT type.

wWidth: Horizontal print size (unit: mm). This is a WORD type.

wHeight: Vertical print size (unit: mm). This is a WORD type.

Return value

Explanation

Sets the size of the image printed with BiPrintImage,BiPrintMemoryImage. It enlarges or
reduces it to fit in the specified size. The setting values are saved in each station that can be
specified with BiSetPrintStation. If the size specified with this API exceeds the printing area of
the station set with BiSetPrintStation, the ERR_ SIZE error is returned and the setting value is
changed. The setting values specified in this API are saved until BiCloseMonPrinter is executed.
The default value for horizontal print size and vertical print size is 0.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-1000 ERR_SIZE Size excess error

Rev.D Reference 4-101

TM-S1000 API for EMEA Reference Guide

BiGetPrintPosition

Gets the currently set printing start position.

Syntax

int BiGetPrintPosition (int nHandle, LPWORD lpwHorizontal, LPWORD lpwVertical)

Argument

nHandle: Specifies the handle. This is an INT type.

lpwHorizontal: Specifies the memory address where the horizontal printing start position is
saved. This is an LPWORD type.

lpwVertical: Specifies the memory address where the vertical printing start position is saved.
This is an LPWORD type.

Return value

Explanation

Gets the setting value of the currently set printing start position. This API can only be executed if
MF_ST_E_ENDORSEMENT is specified in BiSetPrintStation. This API can be called when
Electronic Endorsement (MF_ST_E_ENDORSEMENT, MF_ST_E_ENDORSEMENT_BACK,
MF_ST_E_ENDORSEMENT_FRONT) is specified for BiSetPrintStation.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-102 Reference Rev.D

BiSetPrintPosition

Sets the printing start position.

Syntax

int BiSetPrintPosition (int nHandle, WORD wHorizontal, WORD wVertical)

Argument

nHandle: Specifies the handle. This is an INT type.

wHorizontal: Horizontal printing start position (unit: mm). This is a WORD type.

wVertical: Vertical printing start position (unit: mm). This is a WORD type.

Return value

Explanation

Specifies the printing start position. This API can only be executed if
MF_ST_E_ENDORSEMENT is specified in BiSetPrintStation. This API can be called when
Electronic Endorsement (MF_ST_E_ENDORSEMENT, MF_ST_E_ENDORSEMENT_BACK,
MF_ST_E_ENDORSEMENT_FRONT) is specified for BiSetPrintStation.
The printing start position specified in this API is saved until BiCloseMonPrinter is executed.

The origin for the printing start position specified in this API is the bottom left of the scan image
of the back side of the check paper.
Refer to the model diagram below for the specified printing start position and print data
expansion method.

Note

When multiple print data is expanded with the same printing start position, it is expanded in
duplicate. Adjustment of the printing start position should be performed by the application.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

wVertical

wHcrizontalOrigin

ABCDEFG

Rev.D Reference 4-103

TM-S1000 API for EMEA Reference Guide

BiSetEndorseDirection

Specifies the direction of E-Endorse.

Syntax

int BiSetEndorseDirection (int nHandle, BYTE bDirection)

Argument

nHandle: Specifies the handle. This is an INT type.

bDirection: Specifies the direction for E-endorse. One of the following values can be set. This is
a BYTE type.

Return value

Explanation

The electric endorse printing can be executed by executing BiPrintText, BiPrintImage,
BiPrintMemoryImage.
Selection of electric endorsement on the front side/backside can be made by setting
BiSetPrintStation; however, the setting of this API is applied to both sides regardless of the front
side/backside setting.
The electric endorsement is rotated around the supporting point specified with
BiSetPrintPosition.

Constant Value Description

EENDORSE_DIRECTION_LEFTRIGHT 1 From left to right (normal direction)

EENDORSE_DIRECTION_TOPBOTTOM 2 From top to bottom (Rotate 90 clockwise)

EENDORSE_DIRECTION_RIGHTLEFT 3 From right to left (upside down)

EENDORSE_DIRECTION_BOTTOMTOP 4 From bottom to top (Rotate 90 counterclockwise)

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

wVertical

wHcrizontalOrigin

ABCDEFG

A
B
C
D
E
FG

ABCDEFG

A
B
C
D
E
FG

(EENDORSE_DIRECTION_LEFTRIGHT)

(EENDORSE_DIRECTION_TOPBOTTOM)

(EENDORSE_DIRECTION_RIGHTLEFT)

(EENDORSE_DIRECTION_BOTTOMTOP)

4-104 Reference Rev.D

BiUpdateEndorseText

Updates an endorse character string.

Syntax

int BiUpdateEndorseText(int nHandle, LPSTR lpString[3], DWORD, dwAttribute[3],
 WORD wFont[3], WORD wFontSize[3])

Argument

nHandle: Specifies the handle. This is an INT type.

lpString[3]: Specifies an endorse character string. lpString[0] is the first line, lpString[1] is
the second line, and lpString[2] is the third line. This is an LPSTR type.

dwAttribute[3]: Specifies an attribute of the endorse character string. dwAttribute[0] is the first
line, dwAttribute[1] is the second line, and dwAttribute[2] is the third line. This
is a DWORD type.

wFont[3]: Specifies a font of the endorse character string. wFont[0] is the first line,
wFont[1] is the second line, and wFont[2] is the third line. This is a WORD type.

wFontSize[3]: Specifies a font size of the endorse character string. wFontSize [0] is the first
line, wFontSize [1] is the second line, and wFontSize [2] is the third line. This is
a WORD type.

Return value

Explanation

The endorse character string can be updated by invoking this API from the notification handler
of MF_DATARECEIVE_DONE, the reading status of BiSCNMICRFunctionPostPrint. When the
MF_PRINT structure is not set with BiSCNMICRFunctionPostPrint and endorse printing is not
executed, if the API is executed, the ERR_EXEC_FUNCTION error is returned and the endorse
character string cannot be updated.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-105

TM-S1000 API for EMEA Reference Guide

BiBufferedPrint

Switches to the buffered print mode and executes buffered printing.

Syntax

int BiBufferedPrint (int nHandle, DWORD dwFunction)

Argument

nHandle: Specifies the handle. This is an INT type.

dwFunction: Specifies the function to execute. One of the following values can be set. This is a
DWORD type.

Return value

Explanation

Provides data buffering and prints buffered data to provide buffered printing. The execution
status of this API is saved in each station that can be specified with BiSetPrintStation. It is
possible to improve printing performance using buffered printing using this API as compared
with executing the printing methods individually (BiPrintText,
BiPrintImage,BiPrintMemoryImage).

Furthermore, it is possible to expand the electronic endorsement while receiving the scan data
when the electric endorsement (MF_ST_E_ENDORSEMENT,
MF_ST_E_ENDORSEMENT_BACK, MF_ST_E_ENDORSEMENT_FRONT) is specified in
BiSetPrintStation by invoking this API, buffering the print data and performing buffered
printing. By first expanding data that does not need to be changed using this API to electronic
endorsement, it is possible to limit data expanded in the scanning status
MF_DATARECEIVE_DONE notification to the data that requires occasional updating.

Constant Description

MF_PRT_BUFFERING Buffers the print data.

MF_PRT_EXEC Prints the buffered print data.

MF_PRT_CLEAR Clear the buffered print data and exits buffering mode.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-80 ERR_ACCESS Cannot read/write

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-106 Reference Rev.D

BiSetTransactionNumberWithIncremental

Sets the transaction number and the incremental value.

Syntax

int BiSetTransactionNumberWithIncremental
(int nHandle, DWORD dwTransactionNumber, DWORD dwIncremental)

Argument

nHandle: Specifies the handle. This is an INT type.

dwTransactionNumber: Specifies the transaction number (ID) to set. The range of values that can
be set is from 0 to 999999999. This is a DWORD type.

dwIncremental: Specifies the incremental value of transaction number to set. The range of
values that can be set is from 1 to 999999999.This is a DWORD type.

Return value

Explanation

Sets the transaction number (ID) used for sequential printing,
BiSCNMICRFunctionContinuously scanning status notification. The set value will be
incremented by dwIncremental after the MF_CHECKPAPER_PROCESS_START notification
with BiSCNMICRFunctionContinuously and BiSCNMICRFunctionPostPrint. If
MF_CHECKPAPER_PROCESS_START notification is performed at the maximum value of
999999999, the setting value returns to 0. The transaction number (ID) default value is set to 1.
The default incremental value is set to 1.

<About sequential printing function>
It is the function that specifies a format for transaction number (ID) printing. It prints using the
format of the keyword surrounded by <>. If the keyword surrounded by <> is specified to the
endorse printing character string before the reading process, a character string using the value
acquired by BiGetTransactionNumber is made. The character string is valid until either
BiBufferedPrint MF_PRT_CLEAR or BiBufferedPrint invokes BiPrintText in the of
MF_PRT_EXEC status.

If the keyword surrounded by <> is specified to the endorse printing character string during the
MF_DATARECEIVE_DONE callback, a character string using the transaction ID for the check
paper is made. This character string is cleared after the MF_DATARECEIVE_DONE callback is
notified.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-80 ERR_ACCESS Cannot read/write

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-107

TM-S1000 API for EMEA Reference Guide

There are three patterns for the keywords that can be specified for the sequential printing as
follows:

<0000>: The number of "0"s indicates the number of columns to be printed. The number of
columns that can be set is from 1 to 9. If the transaction number set is less than the number of
columns, 0 is added automatically.

<xxxx>: The number of "x"s indicates the number of the columns to be printed. The number of
the columns that can be set is from 1 to 9. If the transaction number set is less than the number of
the columns, a space is added automatically.

<llll>(small letter of "L" in one-byte): The number of "l"s indicates the number of columns to be
printed. The number of columns that can be set is from 1 to 9. If the transaction number set is less
than the number of columns, the columns are left aligned automatically.

* "<" and ">" are used as special symbols. When printing "<" or ">", specify &< or &>
respectively.

* If a keyword is specified that is outside the rule mentioned above, for example <00xxabc> (0
and x are mixed, the characters other than 0 or x are included), the character string surrounded
by “<“ and “>“ is printed as a usual character string.

Note

With sequential printing, if a number of digits n smaller than the transaction number (ID)
currently set is specified, the latter n digits of the transaction number (ID) are actually printed.

Example:
When the transaction number (ID) currently set is 12345 and the sequential printing is specified
with 4-column <xxxx>, “2345” is actually printed.

4-108 Reference Rev.D

BiSetBehaviorToScnResult

Sets the behavior to the result for scanning.

Syntax

int BiSetBehaviorToScnResult(int nHandle, BYTE bEject, BYTE bStamp, BYTE bNextCheck)

Argument

nHandle: Specifies the handle. This is an INT type.

bEject: Sets the ejection method of check papers. This is a BYTE type.

bStamp: Sets whether to enable a franker. This is a BYTE type.

bNextCheck: Sets whether to feed the next check paper when ejecting the current one.
This is a BYTE type.

Return value

Explanation

It becomes possible to call it in the call back function, in the case that bActivationMode of
MF_PROCESS structure is bound to MF_ACTIVATE_MODE_CONFIRMATION. In the case
that designate MF_ACTIVATE_MODE_HIGH_SPEED and called it is disregarded.

Constant Description

MF_EJECT_MAIN_POCKET Ejects into the main pocket.

MF_EJECT_SUB_POCKET Ejects into the sub pocket.

MF_EJECT_NOEJECT Does not eject.

Constant Description

MF_STAMP_DISABLE Does not perform franking.

MF_STAMP_ENABLE Performs franking.

Constant Description

MF_PROCESS_CONTINUE_OVERLAP Starts the next reading process while ejecting
documents.

MF_PROCESS_CONTINUE_NOOVERLAP Starts the next reading process after ejecting
documents.

MF_PROCESS_CONTINUE_CANCEL Cancels the next reading process.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

Rev.D Reference 4-109

TM-S1000 API for EMEA Reference Guide

BiSetPaperThickness

Specifies the double feed threshold.

Syntax

int BiSetPaperThickness (int nHandle, WORD wThreshold)

Argument

nHandle: Specifies the handle. This is an INT type.

wThreshold: Specifies the double feed threshold. The valid specification range is 1 to 40 (0.01
mm to 0.40 mm). This is a WORD type.
When "0" is specified, the default value is selected.
Paper thickness exceeding the specified value is detected as double feed.
The default value is listed below.

Return value

Explanation

The threshold set using this API ignores the thresholds defined for each paper type using the
MF_PROCESS structure in advance (See “MF_PROCESS” on page 4-152) and applies to all the
paper types.

The thresholds set using this API are valid until BiCloseMonPrinter is invoked.

MfPaperType Default value

MF_PAPER_TYPE_CHECK 0.17 mm

MF_PAPER_TYPE_OTHER 0.23 mm

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

4-110 Reference Rev.D

BiRingBuzzer

Sounds a buzzer.

Syntax

int BiRingBuzzer(int nHandle, BYTE bTone, BYTE bCount, WORD wOnTime, WORD wOffTime)

Argument

nHandle: Specifies the handle. This is an INT type.

bTone: Specifies the buzzer tone. This is a BYTE type.

bCount: Specifies the number of buzzers. The valid setting value is 1 to 8. When a value
exceeding 8 is set, it will be rounded to 8. This is a BYTE type.

wOnTime: Specifies the buzzer tone duration. The valid setting value is 100 to 800 (unit: mm).
The specification must be made in 100 mm unit. A value less than 100 is rounded off
to the nearest hundred. When a value exceeding 800 is set, it will be rounded to 800.
This is a WORD type.

wOffTime: Specifies the off time of buzzer tone. The valid setting value is 100 to 800 (unit: mm).
The setting must be made in 100 mm unit. A value less than 100 is rounded off to the
nearest hundred. A value outside the valid range is rounded to the approximate
value that can be specified.
0 (zero) can be set as well as valid values for the setting. When 0 is specified, the
buzzer keeps sounding during the duration calculated by the following expression:
Ring duration x Number of buzzers. No value is rounded to 0. This is a WORD type.

Return value

Explanation

Setting all the parameters of bTone, bCount, wOnTime and wOffTime to 0 (zero) stops the buzzer.

This also applies to the buzzer specified by the MF_BASE structure.

Constant Description

MF_BUZZER_TONE_HIGH High-pitched sound

MF_BUZZER_TONE_MIDDLE Middle-pitched sound

MF_BUZZER_TONE_LOW Low-pitched sound

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

Rev.D Reference 4-111

TM-S1000 API for EMEA Reference Guide

BiSetWaterfallMode

Specifies the Waterfall mode.

Syntax

int BiSetWaterfallMode (int nHandle, BYTE bWaterfallMode)

Argument

nHandle: Specifies the handle. This is an INT type.

bWaterfallMode:
Specifies the Watefallmode. The default value is WATERFALL_MODE_DISABLE.
This is a BYTE type.

Return value

Constant Description

WATERFALL_MODE_DISABLE Disables Waterfall mode.

WATERFALL_MODE_STANDARD Enables Waterfall mode.
Ejects to the main pocket when starting the reading process.
When the main pocket’s near full is detected, the ejection
pocket is switched to the sub pocket. When the sub pocket’s
near full is detected, the ejection pocket is switched to the
main pocket.

WATERFALL_MODE_INHERIT_POCKET Enables Waterfall mode.
Ejects to the ejection pocket of the previous reading process.
(For example, the previous ejection pocket is the sub pocket,
ejects to the sub pocket.)
When a pocket near full is detected, the ejection pocket is
switched to the other pocket. When a pocket near full has
already been detected when starting the reading process, the
ejection pocket is switched to the other pocket. The ejection
pocket, however, is not switched when the other pocket’s near
full has been detected.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

4-112 Reference Rev.D

Explanation

When a pocket near full is detected when the Waterfall mode is started, the first document is
ejected to the following pocket.

Note

❏ When a pocket near full is detected from both pockets, it is recommended to set
NearFullSelect of MF_PROCESS structure to MF_NEARFULL_NOT_PERMIT, to stop the
reading process. (See “MF_PROCESS” on page 4-152.)

❏ If the TM-S1000 is scanning, this API returns ERR_EXEC_FUNCTION. This API works for
High speed and Confirmation. In the case of Confirmation, this API works for initial-value
of BiSetBehaviorToScnResult.

❏ Ejection pocket setting for each error of MF_PROCESS structure is ignored.

Waterfall mode
Pocket status

Ejection pocket
Main Pocket Sub Pocket

WATERFALL_MODE_STANDARD

Not NearFull Not NearFull Main Pocket

NearFull Not NearFull Sub Pocket

Not NearFull NearFull Main Pocket

NearFull NearFull Main Pocket

WATERFALL_MODE_INHERIT_POCKET

Not NearFull Not NearFull Inherit Pocket

NearFull Not NearFull Sub Pocket

Not NearFull NearFull Main Pocket

NearFull NearFull Inherit Pocket

Rev.D Reference 4-113

TM-S1000 API for EMEA Reference Guide

BiGetIQAResult

Gets IQA result.

Syntax

int BiGetIQAResult (int nHandle, DWORD dwTransactionNumber
, LPMF_IQA_RESULT lpResult)

Argument

nHandle: Specifies the handle. This is an INT type.

dwTransactionNumber:
Specifies the transaction number (ID) for the MICR text acquired.
This is a DWORD type.

lpResult: Specifies the memory address of the MF_IQA_RESULT structure.
This is an LPMF_IQA_RESULT type. The following result is set for each IQA
validation item.

Return value

Explanation

Gets IQA result with BiSCNMICRFunctionContinuously. After the reading status
MF_DATARECEIVE_DONE notification, the reading results are saved in the various
parameters of the MF_IQA_RESULT structure by specifying the relevant transaction number
(ID) in dwTransactionNumber.

Constant Description

IQARESULT_NOT_TESTED IQA validation is not executed.

IQARESULT_PASS Passed IQA validation.

IQARESULT_NOT_PASS Not passed IQA validation.

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-140 ERR_BUFFER_OVER_FLOW Buffer overflow error

-220 ERR_NOT_FOUND No data error

-470 ERR_NOT_EXEC Process not being executed

4-114 Reference Rev.D

BiGetVersion

Acquires a driver version or module version.

Syntax

int BiGetVersion(int nDriverType, int nType, LPVERSION_INFO lpVersion)

Argument

nDriverType: The driver regarded as the acquisition object is designated. This is an INT type.

nType: The type of the version to be acquired. One of the following values can be specified.
This is an INT type.

lpVersion: Sets the address of the structure for storing the version acquisition result. This is an
LPVERSION_INFO type.
VERSION_INFO structure

typedef struct{
CHAR lpszDescription[VERSION_CHAR_MAX];
CHAR lpszVersion[VERSION_CHAR_MAX];
}VERSION_INFO, *LPVERSION_INFO;

VERSION_CHAR_MAX is 64.

Constant Description

DRIVER_TYPE_J9000 TM-J9000/J9100 Driver

DRIVER_TYPE_S1000 TM-S1000 Driver

Constant Description

VERSION_TYPE_DRIVER Driver version

VERSION_TYPE_USB TMUSBDriver version

VERSION_TYPE_MICR Magnetic waveform analysis module version

VERSION_TYPE_MICR_E13B Magnetic waveform analysis module version(E13B)

VERSION_TYPE_MICR_CMC7 Magnetic waveform analysis module version(CMC7)

VERSION_TYPE_OCR OCR recognition module version

VERSION_TYPE_IMAGE Image processing module version

VERSION_TYPE_IQA IQA module version

VERSION_TYPE_BARCODE BARCODE module version

lpszDescription Sets the information of the driver name

lpszVersion Sets the version information acquired.

Rev.D Reference 4-115

TM-S1000 API for EMEA Reference Guide

Return value

Explanation

Acquires this driver version or the module version used with this driver. It is possible to execute
this API before executing BiOpenMonPrinter.

Value Constant Description

0 SUCCESS Success

-90 ERR_PARAM Parameter error

-220 ERR_NOT_FOUND No data error

4-116 Reference Rev.D

BiESCNEnable

Set so that scanner extended functions can be used.
Before calling BiOpenMonPrinter, it is necessary to enable scanner extended functions by calling
this argument.

Syntax

int BiESCNEnable(BYTE bStoreType)

Argument

bStoreType: Select a storing method for a cropped image stored using BiESCNStoreImage. This
is a BYTE type.

Return value

Explanation

Secure save table area with BiOpenMonPrinter.

After calling back image data reading, process the image data acquired by the device and save it
in the WORK AREA.

Arguments of the scanner extended functions (BiESCN~) can be used.

Note

If this argument is called after calling BiOpenMonPrinter, the scanner extended functions cannot
be used and the way of saving a cropped image cannot be changed.

Constant Value Description

CROP_STORE_MEMORY 0 Save in memory

CROP_STORE_FILE 1 Save in a file

Value Constant Description

0 SUCCESS Success

-90 ERR_PARAM Parameter error

-160 ERR_ENABLE Cannot be used because BiOpenMonPrinter is called

Rev.D Reference 4-117

TM-S1000 API for EMEA Reference Guide

BiESCNGetAutoSize

Acquire the value of capAutoSize.

Syntax

int BiESCNGetAutoSize(int nHandle, LPBYTE pCapAutoSize)

Argument

nHandle: Specifies the handle. This is an INT type.

pCapAutoSize: Select a memory address to set a capAutoSize value. This is an LPBYTE type.

Return value

Explanation

If "1" is selected for capAutoSize, after reading image data, AutoSize processing (cut black part
of the image data off) is executed, and the processed image data is saved in the WORK AREA.
The width and height of the image data are automatically set to documentWidth and
documentHeight.

If "0" is selected for capAutoSize, AutoSize processing and automatic setting for the width and
height of the image data are not executed.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-118 Reference Rev.D

BiESCNSetAutoSize

Select the value of capAutoSize.

Syntax

int BiESCNSetAutoSize(int nHandle, BYTE bCapAutoSize)

Argument

nHandle: Specifies the handle. This is an INT type.

bCapAutoSize: Select a value for a capAutoSize. This is a BYTE type.

Return value

Explanation

Acquire a value of capAutoSize (AutoSize processing flag).

If an argument other than CROP_AUTOSIZE_ENABLE or CROP_AUTOSIZE_DISABLE is
selected, the error (ERR_PARAM) is returned.

The AutoSize processing flag that has been set is used in the next image data reading process
(AutoSize processing is not used for the image data that have been already read and saved in the
WORK AREA.)

Constant Value Description

CROP_AUTOSIZE_DISABLE 0 AutoSize processing disabled.

CROP_AUTOSIZE_ENABLE 1 AutoSize processing enabled.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-119

TM-S1000 API for EMEA Reference Guide

BiESCNGetCutSize

Acquires a value of CutSize. This API is compatible with the TM-J9000.

Syntax

int BiESCNGetCutSize (int nHandle, LPWORD pCutSize)

Argument

nHandle: Specifies the handle. This is an INT type.

pCutSize: Specify the memory address to store the CutSize value in increments of 0.1 mm. This is
an LPWORD type.

Return value

Explanation

The CutSize value acquired by this API is the image’s left and right margins to be cropped out.

When other than zero has been specified as the CutSize, the scanned-in image is cropped to the
specified size and stored in the work area.

When zero has been specified as the CutSize, cropping operation is not performed.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-120 Reference Rev.D

BiESCNSetCutSize

Sets a value of CutSize. This API is compatible with the TM-J9000.

Syntax

int BiESCNSetCutSize (int nHandle, WORD wCutSize)

Argument

nHandle: Specifies the handle. This is an INT type.

pCutSize: Specify the width of left and right margins of an image data to be cropped out within a
range of 0 to 1500 in increments of 0.1 mm. The default after executing
BiOpenMonPrinter is zero. This is an WORD type.

Return value

Explanation

Set the value specified by wCutSize to cutSize.

The cutSize is enabled only when capAutoSize has been set to CROP_AUTOSIZE_ENABLE.

Note

The specified cutSize is applied from the next scanning onward. It is not applied to images that
has already been scanned and stored in the work area.

If the specified cutSize value is larger than half the width of the paper, the value is rounded
down to half the width of scanned-in image.

pCutSize Description

0 No cropping operation is performed

1 to 1500 The image is cropped to the specified size.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-121

TM-S1000 API for EMEA Reference Guide

BiESCNGetRotate

Obtains the information whether the setting for rotating image data 90 has been made to the
driver. Also, obtains the value of capRotate.

Syntax

int BiESCNGetRotate(int nHandle, LPBYTE pCapRotate)

Argument

nHandle: Specifies the handle. This is an INT type.

pCapRotate: Specify the address of the memory in which a return value of capRotate is
stored.

Return value

Explanation

Obtains the value of capRotate.

• When CROP_ROTATE_ENABLE is set to capRotate, performs rotation of the image
data (rotates the image data 90 to the right or left) after reading it, and stores the edited
image data in the WORK AREA.

• When CROP_ROTATE_DISABLE is set to capRotate, does not perform any rotation
process.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-122 Reference Rev.D

BiESCNSetRotate

Specifies whether rotate the obtained image data 90× to the driver. Also sets a value to
capRotate.

Syntax

int BiESCNSetRotate(int nHandle, BYTE bCapRotate)

Argument

nHandle: Specifies the handle. This is an INT type.

bCapRotate: Specify the value for capRotate. This is a BYTE type.

Return value

Note

The set Rotate processing flag is not applied until the scanning of the next image data. (The
Rotate process is not applied to the image data already scanned and stored in the WORD
AREA.)

Constant Value Description

CROP_ROTATE_ENABLE 1 Processing Rotate enabled

CROP_ROTATE_DISABLE 0 Processing Rotate disabled

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-123

TM-S1000 API for EMEA Reference Guide

BiESCNGetDeSkew

Obtains a threshold value of the skew angle currently set in the driver.

Syntax

int BiESCNGetDeSkew(int nHandle, LPWORD lpwAngle)

Argument

nHandle: Specifies the handle. This is an INT type.

lpwAngle: Specify the address of the memory to store the threshold value of the skew angle.
This is an LPWORD type.

Return value

Note

The unit of the argument is 0.01.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-124 Reference Rev.D

BiESCNSetDeSkew

Specifies a threshold value for the skew angle to execute DeSkew.

Syntax

int BiESCNSetDeSkew(int nHandle, WORD wAngle)

Argument

nHandle: Specifies the handle. This is an INT type.

wAngle: Specify a threshold value for the skew angle. (Unit: 0.01×)The following values
can also be set. This is an WORD type.

When a value other than DESKEW_ALL or DESKEW_DISABLE is specified and
if the value is other than 1 - 8999, a parameter error occurs.

Return value

Explanation

The driver reads a check and detects the skew angle. If the value exceeds the value set for this
function, DeSkew is executed.
If the detected value is smaller than the one set for this function, DeSkew is not executed.
The default value for the driver is 150 (tilt of 1.5).

Note

Even if DESKEW_All is specified, Deskew is not activated unless the following conditions are
met.

• The skew angle must be 10 degrees or less.

• The entire check image must be included within the range where the image can be
scanned.

Constant Value Description

DESKEW_ALL 0 Executes DeSkew.

DESKEW_DISABLE 65535 Does not execute DeSkew.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-125

TM-S1000 API for EMEA Reference Guide

BiESCNGetDocumentSize

Acquire the values of documentWidth and documentHeight. This API is compatible with the
TM-J9000.

Syntax

int BiESCNGetDocumentSize(int nHandle, LPWORD pDocumentWidth,
 LPWORD pDocumentHeight)

Argument

nHandle: Specifies the handle. This is an INT type.

pDocumentWidth: Select a memory address to set a value of the width of the image data (unit:
0.1 mm). This is an LPDWORD type.

pDocumentHeight: Select a memory address to set a value of the height of the image data (unit:
0.1 mm). This is an LPDWORD type.

Return value

Explanation

Acquire the values of documentWidth and documentHeight (the width and height of the image
data saved in the WORK AREA) by using the unit of 0.1 mm.

Note

If automatic update by reading the image data or a change with BiESCNSetDocumentSize() is
not executed, the default value (width=0, height=0) is acquired.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-126 Reference Rev.D

BiESCNSetDocumentSize

Sets documentWidth and documentHeight of the image data. This API is compatible with the
TM-J9000.

Note
The documentWidth and documentHeight settings made for this API are reflected on
CROP_AREA_ENTIRE_IMAGE of bCropArea, as specified with BiESCNDefineCropArea.

Syntax

int BiESCNSetDocumentSize (int nHandle, WORD wDocumentWidth,
WORD wDocumentHeight)

Argument

nHandle: Specifies the handle. This is an INT type.

pDocumentWidth: This specifies the width of the image data (100 to 3000) in units of 0.1 mm.
This is a WORD type.

pDocumentHeight: This specifies the height of the image data (100 to 3000) in units of 0.1 mm.
This is a WORD type.

Return value

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Rev.D Reference 4-127

TM-S1000 API for EMEA Reference Guide

BiESCNDefineCropArea

Deletes the CropArea registration and the registered CropAreas.

Syntax

int BiESCNDefineCropArea (int nHandle, BYTE bCropAreaID, WORD wStartX,
WORD wStartY, WORD wEndX, WORD wEndY)

Argument

nHandle: Specifies the handle. This is an INT type.

bCropAreaID: This specifies the CropAreaID (1 to 255) to be registered. This is a BYTE type.
A user can use an ID from "2" to "255" for registering a CropArea.

wStartX: This specifies the start X coordinate (0 to wdocumentWidth -1) of CropArea in
units of 0.1 mm. This is a WORD type.

wStartY: This specifies the start Y coordinate (0 to wdocumentHeight -1) of CropArea in
units of 0.1 mm. This is a WORD type.

wEndX: This specifies the end X coordinate (1 to wdocumentWidth -1) of CropArea in
units of 0.1 mm. This is a WORD type.

wEndY: This specifies the end Y coordinate (1 to wdocumentHeight) of CropArea in units
of 0.1 mm. This is a WORD type.

Constant Value Description

CROP_AREA_RESET_ALL 0 All of the registered CropArea data is deleted.

CROP_AREA_ENTIRE_IMAGE 1 Zero is set for the CropArea start X and start Y
coordinates, and the values of wdocumentWidth
and wdocumentHeight are set for the end X and
end Y coordinates.

Constant Value Description

CROP_AREA_RIGHT 65535 Sets the value of wdocumentWidth as the end X
coordinate

Constant Value Description

CROP_AREA_BOTTOM 65535 This sets the value of wdocumentHeight as the end Y
coordinate

4-128 Reference Rev.D

Return value

Explanation

Registers the bCropAreaID that sets the CropArea, in the CropArea definition table of the TM-
S1000 API. Any specified bCropAreaID data that has already been registered is overwritten.
When CROP_AREA_RESET_ALL is specified for bCropAreaID, all of the CropAreas in the
CropArea definition table are deleted. The CropArea origin is the top-left corner.

Note

❏ Up to 255 CropAreas can be registered.

❏ All of the CropAreas registered in the CropArea definition table are deleted each time
BiCloseMonPrinter is called. Register the CropAreas after calling BiCloseMonPrinter.

❏ When the start coordinate is beyond the end coordinate (Start >/= End), ERR_PARAM is
returned to the return value.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

Origin

1234567890 12345 67890

X direction

Y direction

Rev.D Reference 4-129

TM-S1000 API for EMEA Reference Guide

BiESCNGetMaxCropAreas

Acquires the maximum supported data count that can be registered for CropArea.

Syntax

int BiESCNGetMaxCropAreas (int nHandle, LPBYTE pMaxCropAreas)

Argument

nHandle: Specifies the handle. This is an INT type.

pMaxCropAreas: This specifies the memory address in which the maximum supported data
count that can be registered for CropArea is stored.

Return value

Explanation

When acquisition is successful, "255" is set in pMaxCropAreas.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-130 Reference Rev.D

BiESCNStoreImage

Crops the CropArea specified with bCropAreaID from the image data in the work area, and
then saves it to either a file or memory using the save method specified with BiESCNEnable.

Syntax

int BiESCNStoreImage (int nHandle, DWORD dwFileIndex, LPSTR pFileID,
LPSTR pImageTagData, BYTE bCropAreaID)

Argument

nHandle: Specifies the handle. This is an INT type.

dwFileIndex: This specifies FileIndex (an identifier) of the Crop image to be saved. NULL
can also be specified. This is a DWORD type.

pFileID: This specifies FileID (an identifier) of the Crop image to be saved. This is an
LPSTR type. A character string of up to 64 bytes can be specified. NULL can
also be specified. Note that none of \ / : , ; * ? “ < > | can be used.

pImageTagData: This specifies ImageTagData (an identifier) of the Crop image to be saved. This
is an LPSTR type. A character string of up to 64 bytes can be specified. NULL
can also be specified. Note that none of \ / : , ; * ? “ < > | can be used.

bCropAreaID: This specifies the CropAreaID (1 to 255) registered with
BiESCNDefineCropArea. This is a BYTE type.

Rev.D Reference 4-131

TM-S1000 API for EMEA Reference Guide

Return value

Explanation

The cropped image data has the same format as the original image data. All JPEG formats,
however, are saved using standard JPEG compression.
If the size of the CropArea exceeds that of the WORK AREA image data, then the excess appears
white.

The cropped image data is saved to either memory or a file, using the method specified with
BiESCNEnable.
When saving to a file, the file name is formed from the device handle and each identifier
(nHandle & original image data name & dwFileIndex & "_" & pFileID & "_" & pImageTagData),
and is stored to the folder created by the installer.

Example:
nHandle = 1, dwFileIndex = 1, pFileID = “AA”, pImageTagData = “BBB”

File name:
Original image data name:File name to be stored in the Crop image save table
Image.jpg 1Image1_AA_BBB.jpg

Value Constant Description

0 SUCCESS Success

-50 ERR_NO_MEMORY Memory is insufficient

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-170 ERR_DISK_FULL There is insufficient free space on the disk

-180 ERR_NO_IMAGE The image data does not exist

-190 ERR_ENTRY_OVER It is not possible to register more than the maximum allowed number of
items.

-200 ERR_CROPAREAID The specified Crop Area does not exist

-210 ERR_EXIST The specified data has already been saved

-230 ERR_IMAGE_FILEOPEN Open failure

-240 ERR_IMAGE_UNKNOWNF
ORMAT

Format injustice

-250 ERR_IMAGE_FAILED Image data creation failed

-260 ERR_WORKAREA_NO_ME
MORY

WORK AREA image creation failed due to a lack of memory

-270 ERR_WORKAREA_UNKNO
WNFORMAT

WORK AREA image creation failed due to the image data format
being invalid

-280 ERR_WORKAREA_FAILED WORK AREA image creation failed

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-132 Reference Rev.D

Crop image save destination for each execution environment

• Windows2000, WindowsXP :
Documents and Settings\All Users\EPSON\BANK\TM-S1000\Temp\

• Windows Vista or newer Windows versions :
ProgramData\EPSON\BANK\TM-S1000\Temp\

Note

❏ When NULL is specified for allof the identifiers, ERR_PARAM is returned as the return
value.

❏ The pFileID and pImageTagData arguments are not case-sensitive.Therefore, if data with the
same name but in a different case already exists, then ERR_EXIST is returned as the return
value.

Example :
When data named pFileID="AAA", pImageTagData="BBB" has already been saved, and
you wish to save data named pFileID="aaa", pImageTagData="bbb", ERR_EXIST is
returned as the return value.

❏ When saving data to a file, and a file with the same name as the save file already exists, that
file is overwritten.

❏ All of the CropAreas registered in the CropArea definition table are deleted each time
BiCloseMonPrinter is called.

❏ The raster format is not supported for crop image data. When raster format image data is
read from a device, ERR_WORKAREA_UNKNOWNFORMAT is returned as the return
value.

Rev.D Reference 4-133

TM-S1000 API for EMEA Reference Guide

BiESCNRetrieveImage

Acquires the Crop image data that is saved to memory or a file.

Syntax

int BiESCNRetrieveImage (int nHandle, DWORD dwFileIndex, LPSTR pFileID,
LPSTR pImageTagData, LPDWORD pImageSize,
LPBYTE pImageData)

Argument

nHandle: Specifies the handle. This is an INT type.

dwFileIndex: This specifies FileIndex (an identifier) of the Crop image data to be acquired.
This is a DWORD type.
While NULL can be specified, doing so prevents a search being made for the
FileIndex.

pFileID: This specifies FileID (an identifier) of the Crop image data to be acquired. This
is an LPSTR type. Note that none of \ / : , ; * ? “ < > | can be used.
While NULL can be specified, doing so prevents a search being made for the
FileID.

pImageTagData: This specifies ImageTagData (an identifier) of the Crop image data to be
acquired. This is an LPSTR type. Note that none of \ / : , ; * ? “ < > | can be
used.
While NULL can be specified, doing so prevents a search being made for the
ImageTagData.

pImageSize: Specifies the size of the memory in which the size of the acquired Crop image
data is set. This is an LPDWORD type.
After calling this API, the size of the actually acquired CROP image data is
returned. When there is insufficient capacity, the required size is returned
together with the return value.

pImageData: Specifies the memory address where the Crop image data is set. This is an
LPBYTE type.

4-134 Reference Rev.D

Return value

Explanation

Acquires Crop image data, corresponding to the specified identifier, from the Crop image save
table (memory or file) of the TM-S1000 API.
When there are multiple saved items of Crop image data corresponding to the specified
identifier, only the first such item to be found is acquired.

Example :
(1) When dwFileIndex = 1, pFileID =NULL, pImageTagData = NULL are specified
(2) When dwFileIndex = 2, pFileID = NULL, pImageTagData = NULL are specified
(3) When dwFileIndex = NULL, pFileID = “B”, pImageTagData = NULL are specified

Note

❏ All of the CropAreas registered in the CropArea definition table are deleted each time
BiCloseMonPrinter is called.

❏ When NULL is specified for all of the identifiers, ERR_PARAM is returned as the return
value.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-140 ERR_BUFFER_OVER_FLOW Buffer overflow error

-220 ERR_NOT_FOUND No data error

-230 ERR_IMAGE_FILEOPEN Open failure

-290 ERR_IMAGE_FILEREAD Read of the image data file failed

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

dwFileIndex pFileID pImageTagData Image Data

1 “A” NULL

1 “B” NULL

1 “C” NULL

2 “A” NULL

2 “B” NULL

2 “C” NULL

3 “A” “A”

3 “B“ NULL

Save order

(1)
(3)

(2)

Rev.D Reference 4-135

TM-S1000 API for EMEA Reference Guide

BiESCNClearImage

Deletes the stored Crop image data.

Syntax

int BiESCNClearImage (int nHandle, BYTE bFlag, DWORD dwFileIndex, LPSTR pFileID,
LPSTR pImageTagData)

Argument

nHandle: Specifies the handle. This is an INT type.

bFlag: This specifies the deletion method. This is a BYTE type. By using the deletion
methods appropriately, it is possible to specify the Crop image data to be
deleted. Refer to the explanation.

dwFileIndex: This specifies FileIndex (an identifier) of the Crop image data to be deleted.
This is a DWORD type.

pFileID: This specifies FileID (an identifier) of the Crop image data to be deleted. This is
an LPSTR type. Note that none of \ / : , ; * ? “ < > | can be used.

pImageTagData: This specifies ImageTagData (an identifier) of the Crop image data to be
deleted. This is an LPSTR type. Note that none of \ / : , ; * ? “ < > | can be
used.

Return value

Macro Definition (Constant) Value Description

CROP_CLEAR_ALL_IMAGE 0 Deletes all the Crop image save data

CROP_CLEAR_BY_FILEINDEX 1 Deletes the Crop image data specified by
dwFileIndex

CROP_CLEAR_BY_FILEID 2 Deletes the Crop image data specified by
pFileID

CROP_CLEAR_BY_IMAGETAGDATA 4 Deletes the Crop image data specified by
pImageTagData

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-220 ERR_NOT_FOUND No data error

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-136 Reference Rev.D

Explanation

By using bFlag appropriately, it is possible to specify the Crop image data to be deleted.

Example : When the Crop image data specified with dwFileIndex and pImageTagData is to be

deleted

 bFlag = CROP_CLEAR_BY_FILEINDEX + CROP_CLEAR_BY_IMAGETAGDATA;

Note

All of the CropAreas registered in the CropArea definition table are deleted each time
BiCloseMonPrinter is called.

Rev.D Reference 4-137

TM-S1000 API for EMEA Reference Guide

BiESCNGetRemainingImages

Acquires the CropArea remaining count that can be registered.

Syntax

int BiESCNGetRemainingImages (int nHandle, LPBYTE pRemainingImages)

Argument

nHandle: Specifies the handle. This is an INT type.

pRemainingImages: This specifies the memory address where the CropArea remaining count
that can be registered is set. This is an LPBYTE type.

Return value

Explanation

The maximum remaining count that can be acquired is 255.

Value Constant Description

0 SUCCESS Success

-60 ERR_HANDLE The handle value that specifies the device is incorrect

-90 ERR_PARAM Parameter error

-100 ERR_NOT_SUPPORT Unsupported

-310 ERR_EXEC_FUNCTION Cannot be used because the other API is being executed

-400 ERR_RESET Cannot be used because the device is being reset

4-138 Reference Rev.D

Structures

MF_BASE01

typedef struct {
// Base Section
int iSize; IN
int iVersion; IN
int iRet; OUT
DWORD dwNotifyType; IN
DWORD dwTimeout; IN
union {
LPHANDLE lphNotifyEvent; IN
HWND hNotifyWnd; IN
} uNotifyHandle;
HWND hProgressWnd; IN
WORD wErrorEject; IN
BYTE bBuzzerHz[MF_BUZZER_TYPE_MAX]; IN
BYTE bBuzzerCount[MF_BUZZER_TYPE_MAX]; IN
BYTE bUseNVMemory; IN
char cPortName[256]; OUT
WORD wSuccessEject; IN
} MF_BASE01, *LPMF_BASE01;

❏ int iSize; (IN)
This is the size of this structure.

❏ int iVersion; (IN)

❏ This is the structure version. Always specify MF_BASE_VERSION01. The
MF_BASE_VERSION01 value differs for each driver version. The application uses the
MF_BASE_VERSION01 for the supplied header file.

❏ int iRet; (OUT)
The return value for this function is set. Regardless of its being synchronous or
asynchronous, this is set when the function ends. ERR_PARAM is returned when the API is
called by MF_EXEC / MF_xxxx_RETRANS without the MF_BASE01 structure being
specified and when the API is called by MF_EXEC / MF_xxxx_RETRANS when only the
MF_BASE01 structure is specified.

Rev.D Reference 4-139

TM-S1000 API for EMEA Reference Guide

❏ DWORD dwNotifyType; (IN)
When MF_EXEC is specified in the third parameter for this API, it indicates the operating
method for the API. This API can be run synchronously or asynchronously. When the API is
run synchronously, MF_BASE_MESSAGE_NO_MESSAGE is used, and when it is run
asynchronously, another value is used.
BiSCNMICRFunctionPostPrint and BiSCNMICRFunctionContinuously operate
asynchronously regardless of the setting of dwNotifyType.
It is run in the condition where dwNotifyType is specified to
MF_BASE_MESSAGE_NO_MESSAGE, when MF_xxxx_RETRANS is specified in the third
parameter for this API.

• MF_BASE _MESSAGE_NO_MESSAGE
When MF_EXEC / MF_xxxx_RETRANS is used in the third parameter and it is called,
the function does not generate a new thread, and control returns after completion of the
operation specified by the structure. (It is run synchronously.)

• MF_BASE _MESSAGE_EVENT
When MF_EXEC is used in the third parameter and it is called, the function runs a
separate thread and immediately returns control. When the thread is started
successfully, SUCCESS is returned. When there is a parameter error, invalid handle
value or some other failure to meet prerequisite conditions for starting a thread, and
error is returned according to the situation. When the value returned is SUCCESS, there
is notification of completion of the function by setting the event handle specified by
uNotifyHandle to signal status. Notification is carried out by the SetEvent function. The
return value is set in iRet. When processing is canceled by BiSCNMICRCancelFunction,
and event is generated. In this case, ERR_ABORT is set in iRet.

• MF_BASE _MESSAGE_HWND
When MF_EXEC is used in the third parameter and it is called, the function runs a
separate thread and immediately returns control. When the thread is started
successfully, SUCCESS is returned. When there is a parameter error, invalid handle
value or some other failure to meet prerequisite conditions for starting a thread, an error
is returned according to the situation. When the value returned is SUCCESS, there is
notification of completion of the function in the window handle specified by
uNotifyHandle. Notification is done by PostMessage, and regardless of whether it is
normal or abnormal, WM_MF_DONE is sent when the function is completed. The return
value is set in lParam. The return value is the same as for the API (SUCCESS,
ERR_ACCESS, etc.). In addition, the same return value is set in iRet. When processing is
canceled by BiSCNMICRCancelFunction, there is a WM_MF_DONE notification. In this
case, ERR_ABORT is set lParam and in iRet.

• MF_BASE _MESSAGE_BUTTON_CLICK
When MF_EXEC is used in the third parameter and it is called, the function runs a
separate thread and immediately returns control. When the thread is started
successfully, SUCCESS is returned. When there is a parameter error, invalid handle
value or some other failure to meet prerequisite conditions for starting a thread, an error
is returned according to the situation. When the value returned is SUCCESS, there is
notification of completion of the function in the button control window handle specified
by uNotifyHandle using a PostMessage with WM_COMMAND (BN_CLICKED). There
is WM_COMMAND (BN_CLICDED) notification when the function is completed
regardless of whether it is normal or abnormal. The return value is obtained by
referencing iRet. When processing is canceled by BiSCNMICRCancelFunction, there is
notification with the same message. In this case, ERR_ABORT is set in iRet.

4-140 Reference Rev.D

❏ DWORD dwTimeout (IN)
The time to wait before paper insertion is specified in seconds. The values that can be
specified are 0 to 300 (five minutes), and when 0 is specified, there is no timeout. When there
is a timeout, ERR_PAPERINSERT_TIMEOUT is returned. Timeouts other than paper
insertion cannot be specified. However, it is possible for the application to specify a window
handle valid for hProgressWnd and manage timeout times while watching the status of
message notifications using WM_MF_PROGRESS. When independent timeouts are
executed, running BiSCNMICRCancelFunction is recommended. (This is not done,
BiSCNMICRFunctionContinuously will continue to run, and during that time a port will be
occupied.) If BiSCNMICRCancelFunction is run, the BiSCNMICRFunctionContinuously
process will be interrupted, and a port will be opened.

❏ union uNotifyHandle; (IN)
This sets the pointer for the event handle or the window handle for notification of
completion. Since API automatically generates and discards the event handle automatically,
this is not done from the application.

❏ HWND hProgressWnd; (IN)
This sets a window handle for notification of progress in processing. When each data block
is read during scanning, there is notification of what percentage of the total amount has been
read. In the message, MF_PHASE_INIT, MF_PHASE_SCAN, MF_PHASE_MICR,
MF_PHASE_PRINT or MF_PHASE_EXIT is set in wParam by WM_MF_PROGRESS. The
percentage value (0-100) is set in lParam. However, even if lParam is 100%, it does not mean
that this function is complete. Completion of the function is always performed by
WM_MF_DONE notification. There is no problem if the window handle set by
hProgressWnd and uNotifyHandle are the same. When the progress notifications
unnecessary, this parameter is set 0. See "Progress Status Message List" for each of the
phases, the messages sent in each phase, and the message content acquisition macros.

❏ WORD wErrorEject; (IN)
This sets when and how the paper is handled when there is an error running the
BiSCNMICRFunctionContinuously. There are four valid options for this member:
MF_EXIT_ERROR_DISCHARGE specifies that the paper should be ejected to the pocket as
soon as an error occurs.
MF_EXIT_ERROR_RELEASE specifies that the paper should be unclamped and left in the
same location as soon as an error occurs.
MF_EXIT_ERROR_CONTINUE_DISCHARGE specifies that the paper should be ejected to
the pocket once all other handling is complete.
MF_EXIT_ERROR_CONTINUE_RELEASE specifies that the paper should be unclamped
and left in the same location once all other handling is complete.
If a value other then one of these is supplied ERR_PARAM is returned
This value is ignored with BiSCNMICRFunctionContinuously.
When MF_PROCESS structure is used, the priority is given to the action defined with
MF_PROCESS.

❏ BYTE bBuzzerHz[MF_BUZZER_TYPE_MAX]; (IN)
This sets the frequency of the buzzer for MICR reading. This member is made up of three
array elements, and MF_BUZZER_TYPE_SUCCESS is for the case where reading is
successful, MF_BUZZER_TYPE_ERROR for the case where read error is generated, and
MF_BUZZER_TYPE_WFEED for the case where double feed is detected. One out of
MF_BUZZER_HZ_4000, MF_BUZZER_HZ_440, and MF_BUZZER_HZ_880 is specified for
each of the array elements. For example, if
MF_BASE01. bBuzzerHz[MF_BUZZER_TYPE_SUCCESS] = MF_BUZZER_HZ_440;
is set, a 440 Hz buzzer sounds when MICR reading is successful. Number of times the
buzzer sounds can be set using bBuzzerCount. If a value other than the valid values is
specified, ERR_PARAM is returned. Also, with Photo ID, this value is ignored.

Rev.D Reference 4-141

TM-S1000 API for EMEA Reference Guide

❏ BYTE bUseNVMemory; (IN)
Not used.

❏ char cPortName[256]; (OUT)
This sets the port name. When ERR_HANDLE is generated, nothing is set. (zero clear)

❏ WORD wSuccessEject; (IN)
Sets the paper ejection method in the case of successful execution of BiSCNMICRFunction /
BiSCNMICRFunctionPostPrint.
Ejects the paper into the pocket when MF_EXIT_SUCCESS_DISCHARGE is specified.
When MF_EXIT_SUCCESS_RELEASE is specified, this only releases the paper. If values
other than MF_EXIT_SUCCESS_RELEASE is specified, ERR_PARAM is returned.
For BiSCNMICRFunctionContinuously, where the paper is ejected cannot be changed and
the paper is ejected into the main pocket.

4-142 Reference Rev.D

MF_MICR

typedef struct{
// MIC_OCR Section
int iSize; IN
int iVersion; IN
int iRet; OUT
BYTE bFont; IN
BYTE bMicOcrSelect; IN
BOOL blParsing; IN
BYTE bStatus; OUT
BYTE bDetail; OUT
CHAR szMicrStr[MF_MICR_CHAR_MAX]; OUT
MF_OCR_RELIABLE_INFO stOcrReliableInfo[MF_MICR_CHAR_MAX]; OUT
CHAR szAccountNumber[MF_MICR_CHAR_MAX]; OUT
CHAR szAmount[MF_MICR_CHAR_MAX]; OUT
CHAR szBankNumber[MF_MICR_CHAR_MAX]; OUT
CHAR szSerialNumber[MF_MICR_CHAR_MAX]; OUT
CHAR szEPC[MF_MICR_CHAR_MAX]; OUT
CHAR szTransitNumber[MF_MICR_CHAR_MAX]; OUT
long lCheckType; OUT
long lCountryCode; OUT
} MF_MICR, *LPMF_MICR;

❏ int iSize; (IN)
This is the size of this structure.

❏ int iVersion; (IN)
This is the structure version. Always specify MF_MICR_VERSION. Since the
MF_MICR_VERSION value is different for each driver version, the application must always
use the supplied header file.

❏ int iRet; (OUT)
This sets the return values for running MICR OCR.

Rev.D Reference 4-143

TM-S1000 API for EMEA Reference Guide

❏ BYTE bFont; (IN)
E13B sets MF_MICR_FONT_E13B and CMC7 sets MF_MICR_FONT_CMC7. If a value other
than these is specified, ERR_PARAM is returned.
CMC7 does not support acquisition of the OCR recognition result and Parsing.

❏ BYTE bMicOcrSelect; (IN)
When MICR is used, MF_MICR_USE_MICR is specified; when OCR is used,
MF_MICR_USE_OCR is specified, and when both are specified, MF_MICR_USE_MICR |
MF_MICR_USE_OCR is specified. If a value other than these is specified, ERR_PARAM is
returned. CMC7 cannot obtain the OCR recognition result. When bFont is set to
MF_MICR_FONT_CMC7, set MF_MICR_USE_MICR.

❏ BOOL blParsing; (IN)
When TRUE is specified, parsing is carried out, and the character string is set in
szAccountNumber, szAmount, szBankNumber, szSerialNumber, szEPC and
szTransitNumber. The number is set in lCheckType, lCountryCode. FALSE is specified,
parsing is not carried out. When bFont is set to MF_MICR_FONT_CMC7, set False.

bFont : E13B bFont : CMC7

MICR character Name Alternate
character MICR character Alternate

character

Transit t /

Amount a #

On-Us o =

Dash - >

^

4-144 Reference Rev.D

❏ BYTE bStatus; (OUT)
This sets the MICR read status.

When a scan is complete, the value is stored in the status when the first block of the image
data is successfully read. For this reason, if an error occurs before the first block of the image
data is successfully read, the value will not be set as the status when scan is complete.

❏ BYTE bDetail; (OUT)
This sets the MICR details read status.

❏ CHAR szMicrStr[MF_MICR_CHAR_MAX]; (OUT)
This sets the character string read.

❏ MF_OCR_RELIABLE_INFO stOcrReliableInfo[MF_MICR_CHAR_MAX];
This sets the candidates and reliability for the characters read.

typedef struct{
long lPosition; OUT
MF_OCR_RELIABILITY stFirstSelect; OUT
MF_OCR_RELIABILITY stSecondSelect; OUT
}MF_OCR_RELIABLE_INFO, *LPMF_OCR_RELIABLE_INFO;

❏ long lPosition; (OUT)
Position (0 is left edge).
MF_OCR_RELIABILITY stFirstSelect; (OUT)
First recognition candidate.

Bit Function Value

0 1

0 Reading font E13B CMC7

1,2 Reserved Fixed to 0

3 Detailed information - Added

4 Reread - Disabled

5 Reading results Success Failure

6 OCR processing error No Yes

7 Readout data reception error No Yes

Value Information

40h Success

41h Check paper reading has not ever been executed. (The BiSCNMICRFunction function has
not been invoked.)

44h A delivery error occurred in the processing before reading.

45h A magnetic waveform cannot be detected.

46h Characters that cannot be analyzed were detected in the analysis processing.

47h A double-feeding error or an insertion direction error occurred during check paper reading.

48h An abnormality was detected in noise measurement.

49h Check paper reading was stopped due to a feeding error.

4Bh In reading, an error of paper length too long occurred.

Rev.D Reference 4-145

TM-S1000 API for EMEA Reference Guide

❏ MF_OCR_RELIABILITY stSecondSelect; (OUT)
Second recognition candidate.

typedef struct{
char cRecogChar; OUT
long lPercentage; OUT
} MF_OCR_RELIABILITY *LPMF_OCR_RELIABILITY;

char cRecogChar; (OUT)
Recognized characters.
long lPercentage; (OUT)
Reliability (%).

❏ CHAR szAccountNumber[MF_MICR_CHAR_MAX];
AccountNumber property value.

❏ CHAR szAmount[MF_MICR_CHAR_MAX];
Amount property value.

❏ CHAR szBankNumber[MF_MICR_CHAR_MAX];
BankNumber property value.

❏ CHAR szSerialNumber[MF_MICR_CHAR_MAX];
SerialNumber property value.

❏ CHAR szEPC[MF_MICR_CHAR_MAX];
EPC property value.

❏ CHAR szTransitNumber[MF_MICR_CHAR_MAX];
TransitNumber property value.

❏ long lCheckType;
CheckType property value.

❏ long lCountryCode;
CountryCode property value.

4-146 Reference Rev.D

MF_SCAN

typedef struct{
// Scan Section
int iSize; IN
int iVersion; IN
int iRet; OUT
WORD wImageID; IN
short sResolution; IN
BYTE bAddInfoDataSize; IN
LPBYTE pAddInfoData; IN
BYTE bStatus; OUT
BYTE bDetail; OUT
DWORD dwXSize; OUT
DWORD dwYSize; OUT
DWORD dwScanSize; OUT
LPBYTE lpbScanData; OUT
} MF_SCAN, *LPMF_SCAN;

❏ int iSize; (IN)
This is the size of this structure.

❏ int iVersion; (IN)
This is the structure version. Always specify MF_SCAN_VERSION. Since the
MF_SCAN_VERSION value is different for each driver version, the application must always
use the supplied header file.

❏ int iRet; (OUT)
The results for scanning are set. (SUCCESS, ERR_ACCESS, etc.)

❏ WORD wImageID; (IN)
This specifies the ID for an image that is read.

❏ short sResolution; (IN)
This specifies the resolution for an image that is read. Select one from the following preset
parameters. Values other than these, return ERR_PARAM.

Small sized characters on check paper will become hard to read when MF_SCAN_DPI_100
or MF_SCAN_DPI_120 is selected.

sResolution Description

MF_SCAN_DPI_DEFAULT Reading is done at the default resolution for the device. (200 DPI)

MF_SCAN_DPI_100 Reading is at 100 DPI.

MF_SCAN_DPI_120 Reading is at 120 DPI.

MF_SCAN_DPI_200 Reading is at 200 DPI.

MF_SCAN_DPI_240 Reading is at 240 DPI.

Rev.D Reference 4-147

TM-S1000 API for EMEA Reference Guide

❏ BYTE bAddInfoDataSize; (IN)
This specifies the size of additional character data. When this value is 0, no characters are
added even in cases when bAddInfoData is not NULL. The maximum value that can be
specified is 1024.

❏ LPBYTE pAddInfoData; (IN)
This specifies the memory address where characters to be added are set. Even when this
value is not NULL, no characters are added in cases when bAddInfoDataSize is 0. The image
format whose data can be added and the data format that can be added are as follows.

• TIFF : ASCII character string of the end of NULL (1 byte character only). NULL
characters are not counted in the number of characters. The character string of
the shorter of the following is added the value set by bAddInforDataSize, or
the number of the characters from the beginning of the character string until
when null appears.

• JPEG : Arbitrary binary data.

❏ BYTE bStatus; (OUT)
This sets the status when the scan is completed.

For the status when scan is complete, the value when readout of the first block
of the image data is successful is stored. For this reason, if an error occurs
before reading of the first block of the image data is successful, the value will
not be set as the status when scan is complete.

❏ BYTE bDetail; (OUT)
This sets the detailed status when the scan is completed.

Bit Function Value

0 1

0,1,2 Reserved Fixed to 0

3 Rescanned Front Back

4 Reread - Disabled

5 Scanning results Success Failure

6 Scanning data overflow No overflow Not (Fixed)

7 Scanning data translation error No error Ends with an error

Value Information

40h Success

41h No image reading result

42h Cancellation of paper insertion waiting (Executing BiSCNMICRCancelFunction)

44h Cancellation of image reading due to feed error

45h Occurrence of double feed or insertion orientation error during image reading

46h Detection of sending error before reading starts

48h Detection of paper length error during reading

4-148 Reference Rev.D

❏ DWORD dwXSize; (OUT)
This sets the number of dots in the X direction for image reading.

❏ DWORD dwYSize; (OUT)
This sets the number of dots in the Y direction for image reading.

❏ DWORD dwScanSize; (OUT)
This sets the size of the image read.

❏ LPBYTE lpbScanData; (OUT)
This sets the address of the image read. API automatically reserves and discards this
memory. Therefore, the application must discard it in a timely manner. When discarding
this memory on the application-side, specify this memory address for the WindowsAPI
GlobalFree function

Rev.D Reference 4-149

TM-S1000 API for EMEA Reference Guide

MF_PRINT01

typedef struct{
// Print Section
int iSize; IN
int iVersion; IN
int iRet; OUT
BOOL blDummy; IN
LPSTR lpString[3]; IN
DWORD dwAttribute[3]; IN
WORD wFont[3]; IN
WORD wFontSize[3]; IN
BYTE bSpeed; IN
BOOL bDirection; IN
DWORD dwEndorseType; IN
} MF_PRINT01, *LPMF_PRINT01;

❏ int iSize; (IN)
This is the size of this structure.

❏ int iVersion; (IN)
This is the structure version. Always specify MF_PRINT_VERSION01. Since the
MF_PRINT_VERSION01 value is different for each driver version, the application must
always use the supplied header file.

❏ int iRet; (OUT)
This sets the return values for validation printing.

❏ BOOL blDummy; (IN)
Not used.

❏ LPSTR lpString[3]; (IN)
Specifies the address of the ASCII character string for electric endorse printing.
A pointer for the character string of the first line is specified to lpString[0], a pointer for the
character string of the second line is specified to lpString[1], and a pointer for the character
string of the third line is specified to lpString[2]. If all are NULL pointers, ERR_PARAM is
returned. “LF” may be added to the end of the last print line. When line-feeding and
printing the first and second lines, the line-feeding code (CR+LF) needs to be added to the
ends of the ASCII character strings.

4-150 Reference Rev.D

❏ DWORD dwAttribute[3] (IN)
Specifies the attribute of the character string of the first line to dwAttribute[0], the attribute
of the character string of the second line to dwAttribute[1] and the attribute of the character
string of the third line to dwAttribute[2]. The attribute is specified with the following bits
and multiple attributes can be specified.

Bits other than the above are ignored.
When not specifying the attribute, specifies MF_PRINT_NO_ATTRIBUTE.
The line width of the underlines developed with MF_PRINT_UNDERLINE_1 and
MF_PRINT_UNDERLINE_2 is the same.

❏ WORD wFont[3]; (IN)
wFont[0] specifies FONT of the character string of the first line, wFont[1] specifies FONT of
the character string of the second line, and wFont[2] specifies FONT of the character string of
the third line. One of the following is set for the font.

If a value other than the above is specified, ERR_PARAM is returned.
* The values above are used only for parameter checking. The fonts used for the electric
endorse depend on the operating environments.

❏ WORD wFontSize[3]; (IN)
wFontSize[0] specifies the FONT size of the character string of the first line, wFontSize[1]
specifies the FONT size of the character string of the second line, and wFontSize[2] specifies
the FONT size of the character string of the third line. One of the following is set.

If a value other than the above is specified, ERR_PARAM is returned.

Constant Description

MF_PRINT_BOLD Executes emphasized printing

MF_PRINT_UNDERLINE_1 Adds a 1-line width of UnderLine.

MF_PRINT_UNDERLINE_2 Adds a two-line width of UnderLine.

MF_PRINT_REVERSEVIDEO Executes reverse printing

MF_PRINT_BLACK Prints a character with the first color (usually it is black).
(MF_PRINT_1ST_COLOR is the same.)

MF_PRINT_COLOR Prints a character with the second color.
(MF_PRINT_2ND_COLOR is the same.)

MF_PRINT_MIXED Prints a character with the first and second colors

Constant Description

MF_PRINT_FONT_A Prints with FONT A

MF_PRINT_FONT_B Prints with FONT B

Constant Description

MF_PRINT_FONT_W1_H1 a font with 1 unit horizontal and 1 vertical

MF_PRINT_FONT_W1_H2 a font with 1 unit horizontal and 2 vertical

MF_PRINT_FONT_W2_H1 a font with 2 units horizontal and 1 vertical

MF_PRINT_FONT_W2_H2 a font with 2 units horizontal and 2 vertical

Rev.D Reference 4-151

TM-S1000 API for EMEA Reference Guide

❏ BYTE bSpeed; (IN)
Not used.

❏ BOOL bDirection; (IN)
Not used.

❏ DWORD dwEndorseType; (IN)
This specifies the transaction printing process and the ElectricEndorse process.
One of the following values can be specified.

Constant Description

MF_PRINT_TYPE_ELECTRIC_ENDORSE_ONLY Executes electric endorse printing using the data specified with
lpString.

MF_PRINT_TYPE_ELECTRIC_ENDORSE_EXTEND When the electric endorsement (MF_ST_E_ENDORSEMENT,
MF_ST_E_ENDORSEMENT_BACK,
MF_ST_E_ENDORSEMENT_FRONT) is specified with
BiSetPrintStation, after registering the size of characters or
images developed with BiSetPrintSize and specifying the
position of characters or images developed with
BiSetPrintPosition, the electric endorse printing can be
executed by executing BiPrintText, BiPrintImage,
BiPrintMemoryImage.

4-152 Reference Rev.D

MF_PROCESS

This structure is an option; therefore, this does not always need to be set.
When the MF_PROCESS structure is not set and reading is started, operates based on the default
value of the MF_PROCESS structure; however, if the settings that correspond to the MF_BASE
structure exist, the settings of the MF_BASE structure have priority.

typedef struct {
int iSIze; IN
int iVersion; IN
BYTE bActivationMode; IN
BYTE bPaperType; IN
DWORD dwStartWaitTime; IN
BYTE bSuccessStamp; IN
BYTE bPaperMisInsertionErrorSelect; IN
BYTE bPaperMisInsertionErrorEject; IN
BYTE bPaperMisInsertionStamp; IN
BYTE bPaperMisInsertionCancel; IN
BYTE bNoiseErrorSelect; IN
BYTE bNoiseErrorEject; IN
BYTE bNoiseStamp; IN
BYTE bNoiseCancel; IN
BYTE bDoubleFeedErrorSelect; IN
BYTE bDoubleFeedErrorEject; IN
BYTE bDoubleFeedStamp; IN
BYTE bDoubleFeedCancel; IN
BYTE bBaddataErrorSelect; IN
BYTE bBaddataCount; IN
BYTE bBaddataErrorEject; IN
BYTE bBaddataStamp; IN
BYTE bBaddataCancel; IN
BYTE bNodataErrorSelect; IN
BYTE bNodataErrorEject; IN
BYTE bNodataStamp; IN
BYTE bNodataCancel; IN
BYTE bNearFullSelect; IN
BYTE bResultPartialData; IN
} MF_PROCESS, *LPMF_PROCESS;

❏ int iSize; (IN)
This is the size of this structure.

❏ int iVersion; (IN)
This is the structure version. Always specify MF_PROCESS_VERSION. Since the
MF_PROCESS_VERSION value is different for each driver version, the application must
always use the supplied header file.

Rev.D Reference 4-153

TM-S1000 API for EMEA Reference Guide

❏ BYTE bActivationMode; (IN)
This sets the activation mode for scanning. The valid commands are listed below.

When MF_ACTIVATE_MODE_HIGH_SPEED is specified, the driver carries out all the error
verification at scanning. The driver deals with errors according to the pre-set actions.
The actions at error occurrence are specified in this structure. Scan speed may slow down
depending on the setting for the action at error occurrence.

When MF_ACTIVATE_MODE_CONFIRMATION is specified, the application carries out all
the error verification at scanning. For details of the error verification by the application, refer
to the function “BiSetBehaviorToScanResult”

BYTE bPaperType; (IN)
This sets the paper type for a scan target. The valid commands are listed below.

When MF_PAPER_TYPE_CHECK is specified and a paper other than check papers is scanned, a
scan error may occur.
When MF_PAPER_TYPE_OTHER is selected, ease the double feed detection level. The
threshold for detecting double feed can be changed using registry or setting file equivalent to the
registry.The default value is listed below.

❏ DWORD dwStartWaitTime; (IN)
This sets the wait time that is taken before the insertion starts.
The valid setting value is 0 to 6400 (unit: ms).
When a value exceeding 6400 is set, it will be rounded to 6400.

This sets the wait time that is taken from when the device has become ready for the insertion
until the insertion starts.

Constant Description

MF_ACTIVATE_MODE_HIGH_SPEED High-speed scan mode

MF_ACTIVATE_MODE_CONFIRMATION Confirmation scan mode

Constant Description

MF_PAPER_TYPE_CHECK Check papers only

MF_PAPER_TYPE_OTHER Papers other than check papers included

MfPaperType Default value

MF_PAPER_TYPE_CHECK 0.17 mm

MF_PAPER_TYPE_OTHER 0.23 mm

4-154 Reference Rev.D

❏ BYTE bSuccessStamp; (IN)
This sets whether to enable a Franker when scan completes successfully. The valid
commands are listed below.

The default value is MF_STAMP_DISABLE.
In the High Speed mode, operates franker in accordance with this setting value.
In the Confirmation mode, if BiSetBehaviorToScnResult is not invoked in the
MF_DATARECEIVE_DONE callback notification, operates franker in accordance with this
setting value.
When bActivationMode is set to MF_ACTIVATE_MODE_HIGH_SPEED and reading is
executed, if this setting is different from the following, the reading speed will slow down.

bBaddataStamp
bNodataStamp

Stamping operation cannot be shifted with Baddata, Nodata, or Success without slowing
down the reading speed.

❏ BYTE bPaperMisInsertionErrorSelect; (IN)
This sets whether to detect the insertion direction error. The valid commands are listed
below.

When MF_ERROR_SELECT_NODETECT is specified, no error is detected even if the
insertion direction is wrong.
When MF_ERROR_SELECT_DETECT is specified, the action at error occurrence is taken
according to the following.

bPaperMisInsertionErrorEject
bPaperMisInsertionStamp
bPaperMisInsertionCancel

For details, refer to the explanation of each element.

❏ BYTE bPaperMisInsertionErrorEject; (IN)
This sets the ejection method for when the insertion direction error is detected. The valid
commands are listed below.

This setting takes place only when MF_ERROR_SELECT_DETECT is specified in
bPaperMisInsertionErrorSelect.
When MF_EJECT_NOEJECT is specified, the following values are ignored.

bPaperMisInsertionStamp
bPaperMisInsertionCancel

Constant Description

MF_STAMP_ENABLE Franker enabled

MF_STAMP_DISABLE Franker disabled

Constant Description

MF_ERROR_SELECT_NODETECT No error detected

MF_ERROR_SELECT_DETECT Error detected

Constant Description

MF_EJECT_MAIN_POCKET Ejected to the main pocket

MF_EJECT_SUB_POCKET Ejected to the sub pocket

MF_EJECT_NOEJECT Not ejected (completed with error)

Rev.D Reference 4-155

TM-S1000 API for EMEA Reference Guide

❏ BYTE bPaperMisInsertionStamp; (IN)
This sets the whether to enable a franker for when the insertion direction error is detected.
The valid commands are listed below.

The default value is MF_STAMP_DISABLE.
If MF_ERROR_SELECT_NODETECT is set to bPaperMisInsertionErrorSelect, the setting of
bPaperMisInsertionStamp is ignored.

In the High Speed mode, operates franker in accordance with this setting value.
In the Confirmation mode, if BiSetBehaviorToScnResult is not invoked in the
MF_DATARECEIVE_DONE callback notification, operates franker in accordance with this
setting value.

❏ BYTE bPaperMisInsertionCancel; (IN)
Sets whether to continue reading operation when an insertion direction incorrect error
occurs.
When MF_CANCEL_DISABLE is specified, does not cancel the reading process for the next
check paper.
When MF_CANCEL_ENABLE is specified, cancels the reading process for the next check
paper.
The default value is MF_CANCEL_DISABLE.
When MF_ERROR_SELECT_NODETECT is set to bPaperMisInsertionErrorSelect, the
setting of bPaperMisInsertionCancel is ignored.
In the High Speed mode, operates in accordance with this setting value.
In the Confirmation mode, the insertion direction incorrect error is notified with
MF_ERROR_OCCURRED callback and the reading process is continued. If
BiSetBehaviorToScnResult is not invoked in the MF_DATARECEIVE_DONE callback
notification, operates in accordance with this setting value.

❏ BYTE bNoiseErrorSelect; (IN)
Specifies error detection enable/disable when an external noise error is detected.
When MF_ERROR_SELECT_NODETECT is specified, an error is not detected.
When MF_ERROR_SELECT_DETECT is specified, an error is detected.
The default value is MF_ERROR_SELECT_DETECT.
When “an error not detected” is set, the following settings are ignored.

bNoiseErrorEject
bNoiseErrorStamp
NoiseErrorCancel

❏ BYTE bNoiseErrorEject;(IN
Specifies where to eject when an external noise error occurs.
Corresponds to ErrorEject of the MF_BASE structure. Even if the MF_BASE structure is set,
the value of this structure has a priority.
When MF_EJECT_MAIN_POCKET is specified, paper is ejected to the main pocket.
When MF_EJECT_SUB_POCKET is specified, paper is ejected to the sub pocket.
When MF_EJECT_NOEJECT is specified, paper is not ejected.
The default value is MF_EJECT_MAIN_POCKET.
When MF_ERROR_SELECT_NODETECT is set to bBNoiseErrorSelect, the setting of
bNoiseErrorEject is ignored.
In the High Speed mode, paper is ejected into the pocket in accordance with this setting
value.
In the Confirmation mode, if BiSetBehaviorToScnResult is not invoked in the
MF_DATARECEIVE_DONE callback notification, paper is ejected into the pocket in
accordance with this setting value.

Constant Description

MF_STAMP_ENABLE Franker enabled

MF_STAMP_DISABLE Franker disabled

4-156 Reference Rev.D

❏ BYTE bNoiseStamp;(IN)
Specifies a franker processing when an external noise error occurs.

When MF_STAMP_ENABLE is specified, a franker is executed.
MF_STAMP_DISABLE is specified, a franker is not executed.
The default value is MF_STAMP_DISABLE.

When MF_ERROR_SELECT_NODETECT is specified to bNoiseErrorSelect, the setting of
bNoiseStamp is ignored.
In the High Speed mode, executes a franker operation in accordance with this setting value.
In the Confirmation mode, if BiSetBehaviorToScnResult is not invoked in the
MF_DATARECEIVE_DONE callback notification, executes a franker operation in
accordance with this setting value.

❏ BYTE bNoiseCancel;(IN)
Sets whether to continue reading when an external noise error occurs.
Corresponds to errorSelect of BiMICRSelectDataHandling. To have the compatibility with
the TM-J9000 driver, when this structure is not set and the default value of this structure is
not the same as the value of errorSelect, the value of errorSelect has a priority.
When MF_CANCEL_DISABLE is specified, reading for the next check paper is not canceled.
When MF_CANCEL_ENABLE is specified, reading for the next check paper is canceled.
The default value is MF_CANCEL_ENABLE.
When MF_ERROR_SELECT_NODETECT is specified to bNoiseErrorSelect, the setting of
bNoiseCancel is ignored.
In the High Speed mode, executes the operation in accordance with this setting value.
In the Confirmation mode, an external noise error is notified in the
MF_ERROR_OCCURRED callback and the reading process is continued. If
BiSetBehaviorToScnResult is not invoked in the MF_DATARECEIVE_DONE callback
notification, executes the operation in accordance with this setting value.

❏ BYTE bDoubleFeedErrorSelect; (IN)
This sets whether to detect the double feed error. The valid commands are listed below.

When MF_ERROR_SELECT_NODETECT is specified, no error is detected even if a double
feed occurs.
When MF_ERROR_SELECT_DETECT is specified, the action at error occurrence is taken
according to the following.

bDoubleFeedErrorEject
bDoubleFeedStamp
bDoubleFeedCancel

For details, refer to the explanation of each element.

Constant Description

MF_ERROR_SELECT_NODETECT No error detected

MF_ERROR_SELECT_DETECT Error detected

Rev.D Reference 4-157

TM-S1000 API for EMEA Reference Guide

❏ BYTE bDoubleFeedErrorEject; (IN)
This sets the ejection method for when the double feed error is detected. The valid
commands are listed below.

This setting takes place only when MF_ERROR_SELECT_DETECT is specified with
bDoubleFeedErrorSelect.
When MF_EJECT_NOEJECT is specified, the following values are ignored.

bDoubleFeedStamp
bDoubleFeedCancel

❏ BYTE bDoubleFeedStamp; (IN)
This sets whether to enable franker when the double feed error is detected. The valid
commands are listed below.

The default value is MF_STAMP_DISABLE.
When MF_ERROR_SELECT_NODETECT is specified to bDoubleFeedErrorSelect, the
setting of bDoubleFeedStamp is ignored.
In the High Speed mode, a franker operation is executed in accordance with this setting
value.
In the Confirmation mode, if BiSetBehaviorToScnResult is not invoked in the
MF_DATARECEIVE_DONE callback notification, a franker operation is executed in
accordance with this setting value.

❏ BYTE bDoubleFeedCancel; (IN)
Sets whether to continue reading when a double-feed error occurs.
Corresponds to errorSelect of BiMICRSelectDataHandling.
When this structure is not set and the default value of this structure is not the same as the
value of errorSelect, the value of errorSelect has a priority.
When MF_CANCEL_DISABLE is specified, reading process for the next check paper is not
canceled.
When MF_CANCEL_ENABLE is specified, reading process for the next check paper is
canceled.
The default value is MF_CANCEL_DISABLE.
When MF_ERROR_SELECT_NODETECT is specified to bDoubleFeedErrorSelect, the
setting of bDoubleFeedCancel is ignored.
In the High Speed mode, the operation is executed in accordance with this setting value.
In the Confirmation mode, the double-feed error is notified in the MF_ERROR_OCCURRED
callback notification and the reading process is continued. If BiSetBehaviorToScnResult is
not invoked in the MF_DATARECEIVE_DONE callback notification, executes the operation
in accordance with this setting value.

Constant Description

MF_EJECT_MAIN_POCKET Ejected to the main pocket

MF_EJECT_SUB_POCKET Ejected to the sub pocket

MF_EJECT_NOEJECT Not ejected (completed with error)

Constant Description

MF_STAMP_ENABLE Franker enabled

MF_STAMP_DISABLE Franker disabled

4-158 Reference Rev.D

❏ BYTE bBaddataErrorSelect; (IN)
This sets whether to detect characters that cannot be recognized by Mirth. The valid
commands are listed below.

The default value is MF_ERROR_SELECT_ DETECT.
When "No error detected" is set, the following settings are ignored.

bBaddataCount
bBaddataErrorEject
bBaddataStamp
bBaddataCancel

❏ BYTE bBaddataCount; (IN)
This sets the permissible number of characters for when the MICR character recognition
error is detected.
The valid setting value is 0 to 255.

When MICR character recognition error is detected and the number of unrecognized
characters exceeds the permissible number of this setting, the action at error occurrence is
taken according to the following.

bBaddataStamp
bBaddataErrorEject
bBaddataCancel

For details, refer to the explanation of each element.

When the value is set to 0, the action at error occurrence is not taken even if the MICR
character recognition error occurs. When the value is set to 255, all the actions at error
occurrence are taken if the MICR character recognition error occurs.

❏ BYTE bBaddataErrorEject; (IN)
This sets the ejection method for when the MICR character recognition error is detected and
the number of characters detected exceeds the permissible number. The valid commands are
listed below.

The default value is MF_EJECT_MAIN_POCKET.
When bBaddataErrorSelect is specified to MF_ERROR_SELECT_NODETECT or when the
number of characters that cannot be analyzed is not overfewer than the permissible number
specified with bBaddataCount, the setting of bBaddataErrorEject is ignored.
In the High Speed mode, paper is ejected to the pocket corresponding to this setting value.
In the Confirmation mode, if BiSetBehaviorToScnResult is not invoked in the
MF_DATARECEIVE_DONE callback notification, paper is ejected to the pocket
corresponding to this setting value.
When MF_ACTIVATE_MODE_HIGH_SPEED is set to bActivationMode, the scan speed
will slow down if a value other than MF_EJECT_MAIN_POCKET is specified in this setting.

Constant Description

MF_ERROR_SELECT_NODETECT No error detected

MF_ERROR_SELECT_DETECT Error detected

Constant Description

MF_EJECT_MAIN_POCKET Ejected to the main pocket

MF_EJECT_SUB_POCKET Ejected to the sub pocket

MF_EJECT_NOEJECT Not ejected (completed with error)

Rev.D Reference 4-159

TM-S1000 API for EMEA Reference Guide

❏ BYTE bBaddataStamp; (IN)
This sets whether to enable a franker for when the MICR character recognition error is
detected and the number of error characters exceeds the permissible number. The valid
commands are listed below.

This setting takes place only when MF_ERROR_SELECT_DETECT is specified in
bBaddataErrorSelect and the number of unrecognized characters exceeds the permissible
number set in bBaddataCount.
When MF_ACTIVATE_MODE_HIGH_SPEED is set to bActivationMode, the scan speed
will slow down if this setting is different from the following.

bSuccessStamp
bNodataStamp

❏ BYTE bBaddataCancel; (IN)
This sets whether to cancel the action for when the MICR character recognition error is
detected and the number of error characters exceeds the permissible number. The valid
commands are listed below.

The default value is MF_CANCEL_DISABLE.
When bBaddataErrorSelect is specified to MF_ERROR_SELECT_NODETECT or when the
number of characters that cannot be analyzed is fewer than the permissible number
specified with bBaddataCount, the setting of bBaddataCancel is ignored.
In the High Speed mode, executes the operation corresponding to this setting value.
In the Confirmation mode, if the number of characters that cannot be analyzed is over the
permissible number, it is notified in the MF_ERROR_OCCURRED callback and the reading
process is continued.
If BiSetBehaviorToScnResult is not invoked in the MF_DATARECEIVE_DONE callback
notification, executes the operation corresponding to this setting value.
When MF_ACTIVATE_MODE_HIGH_SPEED is set to bActivationMode, the scan speed
will slow down if MF_CANCEL_ENABLE is specified in this setting.

Constant Description

MF_STAMP_ENABLE Franker enabled

MF_STAMP_DISABLE Franker disabled

Constant Description

MF_CANCEL_DISABLE Reading process for the next check paper is not canceled

MF_CANCEL_ENABLE Reading process for the next check paper is canceled

4-160 Reference Rev.D

❏ BYTE bNodataErrorSelect; (IN)
This sets whether to detect errors when magnetic waveform is not found. The valid
commands are listed below.

When MF_ERROR_SELECT_NODETECT is specified, no error is detected even if no MICR
magnetic waveform is found.
When MF_ERROR_SELECT_DETECT is specified, the action at error occurrence is taken
according to the following.

bNodataErrorEject
bNodataStamp
bNodataCancel

For details, refer to the explanation of each element.

❏ BYTE bNodataErrorEject; (IN)
This sets the ejection method for when an error is detected because MICR magnetic
waveform is not found. The valid setting values are as shown below.

This setting takes place only when MF_ERROR_SELECT_DETECT is specified in
bNodataErrorSelect.
When MF_EJECT_NOEJECT is specified, the following values are ignored.

bNodataStamp
bNodataCancel

When MF_ACTIVATE_MODE_HIGH_SPEED is set to bActivationMode, the scan speed
will slow down if a value other than MF_EJECT_MAIN_POCKET is specified in this setting.

❏ BYTE bNodataStamp; (IN)
This sets whether to enable a franker for when an error is detected because MICR magnetic
waveform is not found. The valid commands are listed below.

This setting takes place only when MF_ERROR_SELECT_DETECT is specified in
bNodataErrorSelect.
When MF_ACTIVATE_MODE_HIGH_SPEED is set to bActivationMode, the scan speed
will slow down if this setting is different from the following.

bSuccessStamp
bBaddataStamp

Constant Description

MF_ERROR_SELECT_NODETECT No error detected

MF_ERROR_SELECT_DETECT Error detected

Constant Description

MF_EJECT_MAIN_POCKET Ejected to the main pocket

MF_EJECT_SUB_POCKET Ejected to the sub pocket

MF_EJECT_NOEJECT Not ejected (completed with error)

Constant Description

MF_STAMP_ENABLE Franker enabled

MF_STAMP_DISABLE Franker disabled

Rev.D Reference 4-161

TM-S1000 API for EMEA Reference Guide

❏ BYTE bNodataCancel; (IN)
This sets whether to cancel the action for when an error is detected because that MICR
magnetic waveform is not found. The valid commands are listed below.

The default value is MF_CANCEL_DISABLE.
When bNodataErrorSelect is specified to MF_ERROR_SELECT_NODETECT, the setting of
bNodataCancel is ignored.
In the High Speed mode, executes the operation corresponding to this setting value.
In the Confirmation mode, an MICR magnetic waveform undetected error is notified in the
MF_ERROR_OCCURRED callback, and the reading process is continued. If
BiSetBehaviorToScnResult is not invoked in the MF_DATARECEIVE_DONE callback
notification, executes the operation corresponding to this setting value.
When MF_ACTIVATE_MODE_HIGH_SPEED is set to bActivationMode, the scan speed
will slow down if MF_CANCEL_ENABLE is specified in this setting.

❏ BYTE bNearFullSelect; (IN)
This sets whether to permit scanning when the eject pocket is nearly full. The valid
commands are listed below.

When MF_NEARFULL_NOT_PERMIT is specified, scanning stops if the ejection pocket is
found nearly full.

Note
Do not use MF_NEARFULL_MAIN_PERMIT and MF_NEARFULL_SUB_PERMIT when
the Waterfall mode is executed.

❏ BYTE bResultPartialData; (IN)
This sets whether to acquire data that is being scanned when an error that does not interrupt
any operation occurs in the middle of the scanning. The valid commands are listed below.

Constant Description

MF_CANCEL_DISABLE Reading process for the next check paper is not canceled

MF_CANCEL_ENABLE Reading process for the next check paper is canceled

Constant Description

MF_NEARFULL_PERMIT Scan permitted

MF_NEARFULL_MAIN_PERMIT Scan permitted(Main pocket)

MF_NEARFULL_SUB_PERMIT Scan permitted(Sub pocket)

MF_NEARFULL_NOT_PERMIT Scan not permitted

Constant Description

MF_RESULT_PARTIAL Data being scanned can be acquired

MF_RESULT_NONE Data being scanned is deleted

4-162 Reference Rev.D

MF_OCR_AB

typedef struct {
int iSize; IN
int iVersion; IN
int iRet; OUT
BYTE bOcrType; IN
BYTE bDirection; IN
WORD wStartX; IN
WORD wStartY; IN
WORD wEndX; IN
WORD wEndY; IN
BYTE bSpeceHandling; IN
CHAR szOcrStr[MF_OCR_AB_CHAR_MAX]; OUT
MF_OCR_RELIABLE_INFO strOcrReliableInfo [MF_OCR_AB_CHAR_MAX]; OUT
} MF_OCR_AB, *LPMF_OCR_AB;

❏ int iSize;(IN)
Specifies the size of this structure.

❏ int iVersion;(IN)
Specifies the version of this structure. Be sure to specify MF_OCR_AB_VERSION.

❏ int iRet;(OUT)
Stores the return value of the OCR recognition processing.

❏ BYTE bOcrType;(IN)
Specifies the font type. One of the following can be specified.

Constant Description

MF_OCR_FONT_OCRA_NUM OCR-A font and numbers only

MF_OCR_FONT_OCRB_NUM OCR-B font and numbers only

MF_OCR_FONT_OCRA_ALPHA OCR-A font and alphabetic characters only

MF_OCR_FONT_OCRB_ALPHA OCR-B font and alphabetic characters only

MF_OCR_FONT_OCRA_ALPHANUM OCR-A font and alphanumeric characters

MF_OCR_FONT_OCRB_ALPHANUM OCR-B font and alphanumeric characters

MF_OCR_FONT_OCRA_ALPHANUM_WOOH OCR-A font and alphanumeric characters (except for
OH.)

MF_OCR_FONT_OCRB_ALPHANUM_WOOH OCR-B font and alphanumeric characters (except for
OH.)

MF_OCR_FONT_OCRA_ALPHANUM_WOZERO OCR-A font and alphanumeric characters (except for
ZERO.)

MF_OCR_FONT_OCRB_ALPHANUM_WOZERO OCR-B font and alphanumeric characters (except for
ZERO.)

MF_OCR_FONT_OCRA_SYMNUM OCR-A font, numbers, and symbols (excluding “+”)

MF_OCR_FONT_OCRB_SYMNUM OCR-B font, numbers, and symbols (including “+”)

Rev.D Reference 4-163

TM-S1000 API for EMEA Reference Guide

❏ BYTE bDirection;(IN)
Specifies the character direction for the area for which the OCR recognition is executed. One
of the following values can be specified.

❏ WORD wStartX;(IN)
Specifies the starting point X-coordinate of the area for which the OCR recognition is
executed (Units: mm). The available range is 0 to 254.

❏ WORD wStartY;(IN)
Specifies the starting point Y-coordinate of the area for which the OCR recognition is
executed (Units: mm). The available range is 0 to 254.

❏ WORD wEndX;(IN)
Specifies the ending point X-coordinate of the area for which the OCR recognition is
executed (Units: mm). The available range is 1 to 255.
When OCR_AREA_RIGHT is specified, the right side of an image can be specified.
When OCR_AREA_LEFT is specified, the left side of an image can be specified.

❏ WORD wEndY;(IN)
Specifies the ending point Y-coordinate of the area for which the OCR recognition is
executed (Units: mm). The available range is 1 to 255.
When OCR_AREA_BOTTOM is specified, the bottom side of an image can be specified.
When OCR_AREA_TOP is specified, the top side of an image can be specified.
When the ending point is specified to the origin, all the area for which the OCR recognition
is executed can be specified. In this case, the character string is analyzed as one line.

❏ BYTE bSpaceHandling;(IN)
Specifies a handling method of space characters for the OCR recognition processing.
When OCR_SPACE_ENABLE is specified, space characters are included in the OCR
recognition result.
When OCR_SPACE_DISABLE is specified, space characters are not included in the OCR
recognition result.

❏ CHAR szOcrStr[MF_OCR_AB_CHAR_MAX];(OUT)
Stores character strings acquired by the OCR recognition processing.
This character string is generated from the first candidate of each character.
The value of MF_OCR_AB_CHAR_MAX is 128.

❏ MF_OCR_RELIABLE_INFO stOcrReliableInfo[MF_OCR_AB_CHAR_MAX];(OUT)
Sets the candidatecandidates and the reliability reliabilities for the first and the second
characters acquired by the OCR recognition processing. Character types and reliabilities for
the first and the second candidates can be acquired at the same time as shown in the
example below:
 stFirstSelect.cRecogChar; 0
 stFirstSelect.lPercentage; 80%
 stSecondSelect.cRecogChar; 0
 stSecondSelect.lPercentage; 20%

For MF_OCR_RELIABLE_INFO, refer to “MF_OCR_RELIABLE_INFO” on page 4-164.

Constant Description

MF_OCR_LEFTRIGHT From left to right (normal direction)

MF_OCR_TOPBOTTOM From top to bottom (90-clockwise rotation)

MF_OCR_RIGHTLEFT From right to left (flip vertical)

MF_OCR_BOTTOMTOP From bottom to top (90-counterclockwise rotation)

4-164 Reference Rev.D

MF_OCR_RELIABILITY

typedef struct {
char cRecogChar; OUT
long lPercentage; OUT
} MF_OCR_RELIABILITY *LPMF_OCR_RELIABILITY;

❏ char cRecogChar; (OUT)
Recognized characters

❏ long lPercentage; (OUT)
Reliability (%)

MF_OCR_RELIABLE_INFO

typedef struct {
long lPosition; OUT
MF_OCR_RELIABILITY stFirstSelect; OUT
MF_OCR_RELIABILITY stSecondSelect; OUT

} MF_OCR_RELIABLE_INFO, *LPMF_OCR_RELIABLE_INFO;

❏ long lPosition; (OUT)
Position (0 is far left.)

❏ MF_OCR_RELIABILITY stFirstSelect; (OUT)
The first choice for the recognition.

❏ MF_OCR_RELIABILITY stSecondSelect; (OUT)
The second choice for the recognition.

Rev.D Reference 4-165

TM-S1000 API for EMEA Reference Guide

MF_IQA

typedef struct {
int iSize; IN
int iVersion; IN
BYTE bErrorSelect; IN
BYTE bErrorEject; IN
BYTE bStamp; IN
BYTE bCancel; IN
BYTE bImageFormat; IN
BYTE bColorDepth; IN
CHAR bThreshold; IN
BYTE bColor; IN
BYTE bExOption; IN
short sResolution; IN
BYTE bUndersize; IN
BYTE bOversize; IN
BYTE bMincompressed; IN
BYTE bMaxcompressed; IN
BYTE bFront_rear; IN
BYTE bToolight; IN
BYTE bToodark; IN
BYTE bStreaks; IN
BYTE bNoise; IN
BYTE bFocus; IN
BYTE bCorners; IN
BYTE bEdges; IN
BYTE bFraming; IN
BYTE bSkew; IN
BYTE bCarbon; IN
BYTE bPiggyback; IN

} MF_IQA, *LPMF_IQA;

❏ int iSize; (IN)
This is the size of this structure.

❏ int iVersion; (IN)
This is the structure version. Always specify MF_IQA_VERSION.
 Since the MF_IQA_VERSION value is different for each driver version,
the application must always use the supplied header file.

4-166 Reference Rev.D

❏ BYTE bErrorSelect;(IN)
This sets whether to detect the image quality defects (IQA error). The valid commands are
listed below.

When MF_ERROR_SELECT_NODETECT is specified, no error is detected even if the
insertion direction is wrong.
When MF_ERROR_SELECT_DETECT is specified, the action at error occurrence is taken
according to the following.
 bErrorEject
 bStamp
 bCancel
For details, refer to the explanation of each element.

❏ BYTE bErrorEject;(IN)
This sets the ejection method for when IQA error is detected. The valid commands are listed
below.

This setting takes place only when MF_ERROR_SELECT_DETECT is specified in
bErrorSelect.
This setting has a priority even when wErrorEject of MF_BASE structure is set.
In the High Speed mode, paper is ejected to the pocket set with this setting.
In the Confirmation mode, when BiSetBehaviorToScnResult is not called in the
MF_DATARECEIVE_DONE callback notification, paper is ejected to the pocket set with this
setting.
When reading is processed in the High Speed mode, if this setting is set to other than
MF_EJECT_MAIN_POCKET, reading speed slows down.

❏ BYTE bStamp;(IN)
This sets the whether to enable a franker for when the IQA error is detected. The valid
commands are listed below.

The default value is MF_STAMP_DISABLE.
If MF_ERROR_SELECT_NODETECT is set to bErrorSelect, the setting of bStamp is ignored.
In the High Speed mode, operates franker in accordance with this setting value.
In the Confirmation mode, if BiSetBehaviorToScnResult is not invoked in the
MF_DATARECEIVE_DONE callback notification, operates franker in accordance with this
setting value.
If the setting for bSuccessStamp of MF_PROCESS structure differs from this setting when
reading is processed in the High Speed mode, reading speed slows down.

Constant Description

MF_ERROR_SELECT_NODETECT No error detected

MF_ERROR_SELECT_DETECT Error detected

Constant Description

MF_EJECT_MAIN_POCKET Ejected to the main pocket

MF_EJECT_SUB_POCKET Ejected to the sub pocket

MF_EJECT_NOEJECT Not ejected (completed with error)

Constant Description

MF_STAMP_ENABLE Franker eabled

MF_STAMP_DISABLE Franker disabled

Rev.D Reference 4-167

TM-S1000 API for EMEA Reference Guide

❏ BYTE bCancel; (IN)
Sets whether to continue reading operation when the IQA error occurs.

The default value is MF_CANCEL_DISABLE.
When MF_ERROR_SELECT_NODETECT is set to bErrorSelect, the setting of bCancel is
ignored.
In the High Speed mode, operates in accordance with this setting value.
In the Confirmation mode, the insertion direction incorrect error is notified with
MF_ERROR_OCCURRED callback and the reading process is continued. If
BiSetBehaviorToScnResult is not invoked in the MF_DATARECEIVE_DONE callback
notification, operates in accordance with this setting value.
When reading is processed in the High Speed mode, if this setting is set to other than
MF_CANCEL_ENABLE, reading speed slows down.

❏ BYTE bImageFormat;(IN)
This sets an image format at the IQA validation. For details of the setting value, see
“BiSCNSetImageFormat” on page 4-34. The default value is EPS_BI_SCN_TIFF.

❏ BYTE bColorDepth;(IN)
This sets the gradation (bits per pixel) at the IQA validation. For details of the setting value,
see bColorDepth in “BiSCNSetImageQuality” on page 4-32. The default value is
EPS_BI_SCN_1BIT.

❏ CHAR bThreshold;(IN)
This sets the density threshold at the IQA validation. Enabled when bColorDepth is set to
EPS_BI_SCN_1BIT, and bExOption is set to EPS_BI_SCN_MANUAL.
The valid value is -128 to 127. The default value is “0.”

❏ BYTE bColor;(IN)
This sets color at the IQA validation. For details of the setting value, see bColor in
“BiSCNSetImageQuality” on page 4-32. The default value is
EPS_BI_SCN_MONOCHROME.

❏ BYTE bExOption;(IN)
This sets the variety of density adjustment at the IQA validation. For details of the setting
value, see bExOption in “BiSCNSetImageQuality” on page 4-32.

❏ short sResolution; (IN)
This sets the resolution at the IQA validation. For details of the setting value, see sResolution
in “MF_SCAN” on page 4-146.

❏ BYTE bUndersize; (IN)
This sets the execution of UndersizeImage validation. The valid commands are listed below.
The default value is MF_IQA_TEST_DISABLE.

Constant Description

MF_CANCEL_DISABLE Does not cancel the reading process for the next check paper.

MF_CANCEL_ENABLE Cancels the reading process for the next check paper.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

4-168 Reference Rev.D

❏ BYTE bOversize; (IN)
This sets the execution of OversizeImage validation. The valid commands are listed below.
The default value is MF_IQA_TEST_DISABLE.

❏ BYTE bMincompressed; (IN)
This sets the execution of MinCompressedImageSize validation. The valid commands are
listed below. The default value is MF_IQA_TEST_DISABLE.

Note
When the combination of bColorDepth and bImageFormat is other than the ones listed below,
MinCompressedImageSize validation is not executed even if this is set to
MF_IQA_TEST_ENABLE.

❏ BYTE bMaxcompressed; (IN)
This sets the execution of MaxCompressedImageSize validation. The valid commands are
listed below.
The default value is MF_IQA_TEST_DISABLE.

Note
When the image format is not a compression format, MaxCompressedImageSize validation is not
executed even if this is set to MF_IQA_TEST_ENABLE. For details, refer to bMincompressed
(4-168).

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

bColorDepth bImageFormat

EPS_BI_SCN_1BIT

EPS_BI_SCN_TIFF

EPS_BI_SCN_JPEGHIGH

EPS_BI_SCN_JPEGNORMAL

EPS_BI_SCN_JPEGLOW

EPS_BI_SCN_JTIFF

EPS_BI_SCN_8BIT

EPS_BI_SCN_JPEGHIGH

EPS_BI_SCN_JPEGNORMAL

EPS_BI_SCN_JPEGLOW

EPS_BI_SCN_JTIFF

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Rev.D Reference 4-169

TM-S1000 API for EMEA Reference Guide

❏ BYTE bFront_rear; (IN)
This sets the execution of FrontRearImageMismatch validation. The valid commands are
listed below.
The default value is MF_IQA_TEST_DISABLE.

❏ BYTE bToolight; (IN)
This sets the execution of ImageTooLight validation. The valid commands are listed below.
The default value is MF_IQA_TEST_DISABLE.

❏ BYTE bToodark; (IN)
This sets the execution of ImageTooDark validation. The valid commands are listed below.
The default value is MF_IQA_TEST_DISABLE.

❏ BYTE bStreaks; (IN)
This sets the execution of HorizontalStreaksPresent validation. The valid commands are
listed below.
The default value is MF_IQA_TEST_DISABLE.

❏ BYTE bNoise; (IN)
This sets the execution of ExcessiveSpotNoise validation. The valid commands are listed
below.
The default value is MF_IQA_TEST_DISABLE.

Note
When bColorDepth is set to EPS_BI_SCN_8BIT, ExcessiveSpotNoise validation is not executed
even if this is set to MF_IQA_TEST_ENABLE.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

4-170 Reference Rev.D

❏ BYTE bFocus; (IN)
This sets the execution of ImageOutOfFocus validation. The valid commands are listed
below.
The default value is MF_IQA_TEST_DISABLE.

Note
When bColorDepth is set to EPS_BI_SCN_1BIT, ImageOutOfFocus validation is not executed
even if this is set to MF_IQA_TEST_ENABLE.

❏ BYTE bCorners; (IN)
This sets the execution of FoldedTornDocCorners validation. The valid commands are listed
below.
The default value is MF_IQA_TEST_DISABLE.

❏ BYTE bEdges; (IN)
This sets the execution of FoldedTornDocEdges validation. The valid commands are listed
below.
The default value is MF_IQA_TEST_DISABLE.

❏ BYTE bFraming; (IN)
This sets the execution of DocFramingError validation. The valid commands are listed
below.
The default value is MF_IQA_TEST_DISABLE.

❏ BYTE bSkew; (IN)
This sets the execution of ExcessiveDocSkew validation. The valid commands are listed
below.
The default value is MF_IQA_TEST_DISABLE.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Rev.D Reference 4-171

TM-S1000 API for EMEA Reference Guide

❏ BYTE bCarbon; (IN)
This sets the execution of CarbonStripDetection validation. The valid commands are listed
below.
The default value is MF_IQA_TEST_DISABLE.

❏ BYTE bPiggyback; (IN)
This sets the execution of Piggyback validation. The valid commands are listed below.
The default value is MF_IQA_TEST_DISABLE.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

Constant Description

MF_IQA_TEST_DISABLE Validation is not executed.

MF_IQA_TEST_ENABLE Validation is executed.

4-172 Reference Rev.D

MF_IQA_RESULT

typedef struct {
int iSize; IN
int iVersion; IN
int iRet; OUT
IQARESULT_UNDERSIZE_IMAGE stUnderSize; OUT
IQARESULT_OVERSIZE_IMAGE stOverSize; OUT
IQARESULT_MIN_COMPRESSED_IMAGE_SIZE stMinCompressedImageSize; OUT
IQARESULT_MAX_COMPRESSED_IMAGE_SIZE stMaxCompressedImageSize; OUT
IQARESULT_FRONT_REAR_IMAGE_MISMATCH stFrontRearImageMismatch; OUT
IQARESULT_IMAGE_TOO_LIGHT stImageTooLight; OUT
IQARESULT_IMAGE_TOO_DARK stImageTooDark; OUT
IQARESULT_HORIZONTAL_STREAKS_PRESENT stHorizontalStreaksPresent; OUT
IQARESULT_EXCESSIVE_SPOT_NOISE stExcessiveSpotNoise; OUT
IQARESULT_IMAGE_OUT_OF_FOCUS stImageOutOfFocus; OUT
IQARESULT_FOLDED_TORN_DOC_CORNERS stFoldedTornDocCorners; OUT
IQARESULT_FOLDED_TORN_DOC_EDGES stFoldedTornDocEdges; OUT
IQARESULT_DOC_FRAMING_ERROR stDocFramingError; OUT
IQARESULT_EXCESSIVE_DOC_SKEW stExcessiveDocSkew; OUT
IQARESULT_CARBON_STRIP_DETECTION stCarbonStripDetection; OUT
IQARESULT_PIGGYBACK stPiggyBack; OUT

} MF__IQA_RESULT, *LPMF_IQA_RESULT;

❏ int iSize; (IN)
This is the size of this structure.

❏ int iVersion; (IN)
This is the structure version. Always specify MF_IQARESULT_VERSION.
Since the MF_IQARESULT_VERSION value is different for each driver version,
the application must always use the supplied header file.

❏ int iRet; (OUT)
This sets the return values for running IQA.

❏ stUnderSize; (OUT)
UndersizeImage validation result is set.

typedef struct tag_IQA_UNDERSIZE_IMAGE {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iWidth; // width in tenths of an inch
int iHeight; // height in tenths of an inch

} IQARESULT_UNDERSIZE_IMAGE, *LPIQARESULT_UNDERSIZE_IMAGE;

❏ stOverSize; (OUT)
OversizeImage validation result is set.

typedef struct tag_IQA_OVERSIZE_IMAGE {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iWidth; // width in tenths of an inch
int iHeight; // height in tenths of an inch

} IQARESULT_OVERSIZE_IMAGE, *LPIQARESULT_OVERSIZE_IMAGE;

Rev.D Reference 4-173

TM-S1000 API for EMEA Reference Guide

❏ stMinCompressedImageSize; (OUT)
MinCompressedImageSize validation result is set.

typedef struct tag_IQA_MIN_COMPRESSED_IMAGE_SIZE {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iSize; // compressed image size in bytes

} IQARESULT_MIN_COMPRESSED_IMAGE_SIZE,
 *LPIQARESULT_MIN_COMPRESSED_IMAGE_SIZE;

❏ stMaxCompressedImageSize; (OUT)
MaxCompressedImageSize validation result is set.

typedef struct tag_IQA_MAX_COMPRESSED_IMAGE_SIZE {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iSize; // compressed image size in bytes

} IQARESULT_MIN_COMPRESSED_IMAGE_SIZE,
 *LPIQARESULT_MIN_COMPRESSED_IMAGE_SIZE;

❏ stFrontRearImageMismatch; (OUT)
FrontRearImageMismatch validation result is set.

typedef struct tag_IQA_FRONT_REAR_IMAGE_MISMATCH {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iAbsWidthDiff; // absolute value of width difference between front and rear

 in tenths of an inch
int iAbsHeightDiff; // absolute value of height difference between front and rear

 in tenths of an inch
} IQARESULT_FRONT_REAR_IMAGE_MISMATCH,
 *LPIQARESULT_FRONT_REAR_IMAGE_MISMATCH;

❏ stImageTooLight; (OUT)
ImageTooLight validation result is set.

typedef struct tag_IQA_IMAGE_TOO_LIGHT {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iBlackPixels; // percenage of black pixels in the image in units of 0.1 percent
int iBrightness; // percent image brightness in units of 0.1 percent
int iContrast; // percent image contrast in units of 0.1 percent

} IQARESULT_IMAGE_TOO_LIGHT,*LPIQARESULT_IMAGE_TOO_LIGHT;

❏ stImageTooDark; (OUT)
ImageTooDark validation result is set.

typedef struct tag_IQA_IMAGE_TOO_DARK {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iBlackPixels; // percenage of black pixels in the image in units of 0.1 percent
int iBrightness; // percent image brightness in units of 0.1 percent

} IQARESULT_IMAGE_TOO_DARK,*LPIQARESULT_IMAGE_TOO_DARK;

4-174 Reference Rev.D

❏ stHorizontalStreaksPresent; (OUT)
HorizontalStreaksPresent validation result is set.

typedef struct tag_IQA_HORIZONTAL_STREAKS_PRESENT {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iStreakCount; // Number of black streaks present in bitonalimages
int iStreakHeight; // Height of the largest horizontal black streak

} IQARESULT_HORIZONTAL_STREAKS_PRESENT,
 *LPIQARESULT_HORIZONTAL_STREAKS_PRESENT;

❏ stExcessiveSpotNoise; (OUT)
ExcessiveSpotNoise validation result is set.

typedef struct tag_IQA_EXCESSIVE_SPOT_NOISE {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iCount; // average number of spots per square inch of the image

 defined for bi-tonal only
} IQARESULT_EXCESSIVE_SPOT_NOISE, *LPIQARESULT_EXCESSIVE_SPOT_NOISE;

❏ stImageOutOfFocus; (OUT)
ImageOutOfFocus validation result is set.

typedef struct tag_IQA_IMAGE_OUT_OF_FOCUS {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iImageFocusScore;
 // (max video gradient) /(grey level dynamic range) * (pixel pitch)

} IQARESULT_IMAGE_OUT_OF_FOCUS, *LPIQARESULT_IMAGE_OUT_OF_FOCUS;

❏ stFoldedTornDocCorners; (OUT)
FoldedTornDocCorners validation result is set.

typedef struct tag_IQA_FOLDED_TORN_DOC_CORNERS {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iTopLeftWidth; // Dimensions of circumscribing rectangle of torn/folded
int iTopLeftHeight; corners in tenths of inches
int iTopRightWidth;
int iTopRightHeight;
int iBottomLeftWidth;
int iBottomLeftHeight;
int iBottomRightWidth;
int iBottomRightHeight;

} IQARESULT_FOLDED_TORN_DOC_CORNERS,
 *LPIQARESULT_FOLDED_TORN_DOC_CORNERS;

Rev.D Reference 4-175

TM-S1000 API for EMEA Reference Guide

❏ stFoldedTornDocEdges; (OUT)
FoldedTornDocEdges validation result is set.

typedef struct tag_IQA_FOLDED_TORN_DOC_EDGES {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iTopWidth; // Dimensions of circumscribing rectangle of torn/folded
int iTopHeight; corners in tenths of inches
int iLeftWidth;
int iLeftHeight;
int iRightWidth;
int iRightHeight;
int iBottomWidth;
int iBottomHeight;

} IQARESULT_FOLDED_TORN_DOC_EDGES,
 *LPIQARESULT_FOLDED_TORN_DOC_EDGES;

❏ stDocFramingError; (OUT)
DocFramingError validation result is set.

typedef struct tag_IQA_DOC_FRAMING_ERROR {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iTop; // Dimensions of the additional scanlines on each side of
int iLeft; the frame in tenths of an inch
int iRight;
int iBottom;

} IQARESULT_DOC_FRAMING_ERROR, *LPIQARESULT_DOC_FRAMING_ERROR;

❏ stExcessiveDocSkew; (OUT)
ExcessiveDocSkew validation result is set.

typedef struct tag_PIQA_EXCESSIVE_DOC_SKEW {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iAngle; // Angle of skew in tenths of a degree
int iRange; // Fixed to 0

} IQARESULT_EXCESSIVE_DOC_SKEW, *LPIQARESULT_EXCESSIVE_DOC_SKEW;

❏ stCarbonStripDetection; (OUT)
CarbonStripDetection validation result is set.

typedef struct tag_IQA_CARBON_STRIP_DETECTION {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)
int iStripHeight; // Carbon strip height

} IQARESULT_CARBON_STRIP_DETECTION,
 *LPIQARESULT_CARBON_STRIP_DETECTION;

❏ stPiggyBack; (OUT)
Piggyback validation result is set.

typedef struct tag_IQA_PIGGYBACK {
BYTE bResult; // test result (Refer to “BiGetIQAResult” on page 4-113)

} IQARESULT_PIGGYBACK, *LPIQARESULT_PIGGYBACK;

4-176 Reference Rev.D

MF_BARCODE

typedef struct {
int iSize; IN
int iVersion; IN
int iRet; OUT
BYTE bErrorSelect; IN
BYTE bErrorEject; IN
BYTE bStamp; IN
BYTE bCancel; IN
DWORD dwTargetColor; IN
short sResolution; IN
DWORD dwInfoMode; IN
BARCODE_INFO stInfo[5]; IN

ypedef struct {
int iRet; (OUT)
BYTE bStatus; (OUT)
BYTE bDetail; (OUT)
DWORD dwSymbolMask; (IN)
BYTE bDirection; (IN)
BYTE bOrigin; (IN)
WORD wStartX; (IN)
WORD wStartY; (IN)
WORD wEndX; (IN)
WORD wEndY; (IN)

} BARCODE_INFO, *LPBARCODE_INFO;
BYTE bDataCount; OUT
LPVOID lpData; OUT
} MF_BARCODE, *LPMF_BARCODE;

❏ int iSize; (IN)
This is the size of this structure.

❏ int iVersion; (IN)
This is the structure version. Always specify MF_BARCODE_VERSION.
Since the MF_BARCODE_VERSION value is different for each driver version,
the application must always use the supplied header file.

❏ int iRet; (OUT)
The execution result on barcode is set.

❏ BYTE bErrorSelect;(IN)
Specifies whether to detect the barcode decode error.
 The valid commands are listed below.

The default value is MF_ERROR_SELECT_DETECT.
If MF_ERROR_SELECT_DETEC is specified, the settings of bErrorEject, bStamp, bCancel
are ignored.

Constant Description

MF_ERROR_SELECT_NODETECT No error detected

MF_ERROR_SELECT_DETECT Error detected

Rev.D Reference 4-177

TM-S1000 API for EMEA Reference Guide

❏ BYTE bErrorEject;(IN)
Specifies where to eject when the barcode decode error is detected.
 The valid commands are listed below.

The default value is MF_EJECT_MAIN_POCKET.
If MF_ERROR_SELECT_NODETECT is set to bErrorSelect, the setting of bErrorEject is
ignored.
In the Confirmation mode, this setting is applied when BiSetBehaviorToScnResult cannot be
called back in the MF_DATARECEIVE_DONE callback process. Reading speed decreases if
bActivationMode of MF_PROCESS structure is set, and this setting is set to other than
MF_EJECT_MAIN_POCKET.

❏ BYTE bStamp;(IN)
Specifies whether to do the flanking process to the sheet when the barcode decode error is
detected. The valid commands are listed below.

The default value is MF_STAMP_DISABLE.
If MF_ERROR_SELECT_NODETECT is set to bErrorSelect, the setting of bStamp is ignored.
In the High Speed mode, operates franker in accordance with this setting value.
In the Confirmation mode, if BiSetBehaviorToScnResult is not invoked in the
MF_DATARECEIVE_DONE callback notification, operates franker in accordance with this
setting value.
If the setting for bSuccessStamp of MF_PROCESS structure differs from this setting when
reading is processed in the High Speed mode, reading speed slows down.

❏ BYTE bCancel; (IN)
Specifies whether to continue the reading process when the barcode decode error is
detected. The valid commands are listed below.

The default value is MF_CANCEL_DISABLE.
When MF_ERROR_SELECT_NODETECT is set to bErrorSelect, the setting of bCancel is
ignored.
In the High Speed mode, operates in accordance with this setting value.
In the Confirmation mode, the insertion direction incorrect error is notified with
MF_ERROR_OCCURRED callback and the reading process is continued. If
BiSetBehaviorToScnResult is not invoked in the MF_DATARECEIVE_DONE callback
notification, operates in accordance with this setting value.
When reading is processed in the High Speed mode, if this setting is set to other than
MF_CANCEL_ENABLE, reading speed slows down.

Constant Description

MF_EJECT_MAIN_POCKET Ejected to the main pocket

MF_EJECT_SUB_POCKET Ejected to the sub pocket

MF_EJECT_NOEJECT Not ejected (completed with error)

Constant Description

MF_STAMP_ENABLE Franker eabled

MF_STAMP_DISABLE Franker disabled

Constant Description

MF_CANCEL_DISABLE Does not cancel the reading process for the next check paper.

MF_CANCEL_ENABLE Cancels the reading process for the next check paper.

4-178 Reference Rev.D

❏ DWORD dwTargetColor; (IN)
Specifies the barcode color.
Specify BARCODE_TARGET_COLOR_GRAYSCALE.

❏ short sResolution; (IN)
Specifies the image resolution of image data.
Specify MF_SCAN_DPI_DEFAULT (200 dpi).

❏ DWORD dwInfoMode; (IN)
Specify 0.

❏ BARCODE_INFO stInfo[5]; (IN)
This is the structure where the decode setting and the status of decode result are made. Five
arrangements are available.

• int iRet; (OUT)
The barcode decode execution result is set.
For the details, refer to “MF_BARCODE.iRet” on page 4-64.

• BYTE bStatus; (OUT)
The status of decoding result is set.

• BYTE bDetail; (OUT)
The detailed status of decoding result is set.

Bit Function Value

0 1

0,1,2 Reserved Fixed to 0

3 Detailed information - Added

4 Reserved Fixed to 0

5 Reading result Success Failure

6,7 Reserved Fixed to 0

Value Information

40h Success

45h Barcode cannot be detected.

Rev.D Reference 4-179

TM-S1000 API for EMEA Reference Guide

• DWORD dwSymbolMask; (IN)
Specifies the type of barcode symbol to decode. Make sure to set this because the default
value is not set for this setting. A combination of multiple barcode symbols can be set.

<Example: When specifying Codabar and ITF>

MF_BARCODE.stInfo[0].dwSymbolMask = (MF_BARCODE_SYMBOL_CODABAR |
MF_BARCODE_SYMBOL_ITF);

• BYTE bDirection; (IN)
Sets the barcode decode direction.
The default value is MF_BARCODE_DIRECTION_ALL.

• BYTE bOrigin; (IN)
Setting is not necessary.

• WORD wStartX; (IN)
Setting is not necessary.

• WORD wStartY; (IN)
Setting is not necessary.

• WORD wEndX; (IN)
Setting is not necessary.

• WORD wEndY; (IN)
Setting is not necessary.

❏ BYTE bDataCount; (OUT)
The number of scanned barcodes is set.

Constant Barcode

MF_BARCODE_SYMBOL_CODABAR Codabar

MF_BARCODE_SYMBOL_CODE128 Code128

MF_BARCODE_SYMBOL_CODE39 Code39

MF_BARCODE_SYMBOL_ITF ITF

MF_BARCODE_SYMBOL_EAN_JAN JAN13(EAN), JAN8(EAN)

MF_BARCODE_SYMBOL_UPC_A UPC-A

MF_BARCODE_SYMBOL_UPC_E UPC-E

Constant Description

MF_BARCODE_DIRECTION_ALL Decodes it in both directions from left to
right and top to bottom

MF_BARCODE_DIRECTION_LEFTRIGHT Decodes it from left to right

MF_BARCODE_DIRECTION_TOPBOTTOM Decodes it from top down

MF_BARCODE_DIRECTION_RIGHTLEFT Decodes it from right to left

MF_BARCODE_DIRECTION_BOTTOMTOP Decodes it from bottom up

4-180 Reference Rev.D

❏ LPVOID lpData; (OUT)
The result of barcode decoding (BARCODE_DATA structure) is set.
The BARCODE_DATA structure is an element of arrangement. The number of elements is
the number of read barcodes (bDataCount). If there is no decode result of barcode, NULL is
set.

<BARCODE_DATA structure>

typedef struct {
DWORD dwSymbol; OUT
BYTE bDirection; OUT
WORD wStartX; OUT
WORD wStartY; OUT
WORD wEndX; OUT
WORD wEndY; OUT
DWORD dwDataSize; OUT
LPVOID pData; OUT

} BARCODE_DATA, *LPBARCODE_DATA;

• DWORD dwSymbol; (OUT)
The scanned barcode symbol is set.
Refer to dwSymbolMask (4-179) for the set value.

• BYTE bDirection; (OUT)
The direction of decoded barcode is set.

• WORD wStartX; (OUT)
The starting of decoding in the x-coordinate (dot unit) of scanned barcode is set.

• WORD wStartY; (OUT)
The starting of decoding in the y-coordinate (dot unit) of scanned barcode is set.

• WORD wEndX; (OUT)
The end of decoding in the x-coordinate (dot unit) of scanned barcode is set.

• WORD wEndY; (OUT)
The end of decoding in the y-coordinate (dot unit) of scanned barcode is set.

• DWORD dwDataSize; (OUT)
The size of the scanned barcode's binary data is set.
The size including the NULL at the end is set if the set data(pData) is a character string.

• LPVOID pData; (OUT)
The scanned barcode's binary data is set.
The size including the NULL at the end is set if the set result is a character string.
Free the reference memory with GlobalFree.

Constant Description

MF_BARCODE_DIRECTION_LEFTRIGHT Decodes it from left to right

MF_BARCODE_DIRECTION_TOPBOTTOM Decodes it from top down

MF_BARCODE_DIRECTION_RIGHTLEFT Decodes it from right to left

MF_BARCODE_DIRECTION_BOTTOMTOP Decodes it from bottom up

Rev.D Differences Between TM-J9000/J9100 API and TM-S1000 API 5-1

TM-S1000 API for EMEA Reference Guide

Chapter 5
Differences Between TM-J9000/J9100 API and TM-S1000 API

This chapter describes the differences between the TM-S1000 API and the TM-J9000/J9100 API
to enable you to use an application for the TM-J9000/J9100 with one for the TM-S1000.

The differences between the APIs for the TM-J9000/J9100 and the TM-S1000 are as follows:

❏ The TM-J9000/J9100 is a printer with a scanner/photo ID function, while the TM-S1000 is a
device for scanning only. The TM-J9000/J9100 APIs for printer/Photo ID are not available
for the TM-S1000. If they are used, a value of ERR_NOT_SUPPORT will be returned.

❏ Even among the TM-J9000/J9100 APIs available for the TM-S1000, there are ones whose
parameters specified, return value, or event content are different. If any parameter that is not
supported is specified, a value of ERR_NOT_SUPPORT will be returned.

API Lists of the TM-J9000/J9100 and the TM-S1000

Consider the following information for your applications.

Compatibility Between the TM-J9000/J9100 and the TM-S1000

New: API newly added for the TM-S1000. It is not available for the TM-J9000/J91000.

Up: API whose function was extended from the TM-J9000/J9100 API. It is upward
compatible. It enables efficient use of the TM-S1000 functions.

OK: API that is compatible with the TM-S1000 API. Use as it is.

Change:API that has the same name as that of the TM-J9000/J9100 API, but that has a
different input or output. Refer to the differences to change the source and use
it.

NG: API only for the TM-J9000/J9100. It is not supported by the TM-S1000.

API Compati
bility

Different information

Input Output Description Item Data

BiOpenMonPrinter Change ✔ - Specified product
name is different.

pNAME TYPE_PORT
: USB2
TYPE_PRINT
ER : TM-
S1000U

BiSetMonInterval OK -

BiGetStatus Change - ✔ Obtained Devie status
information is different.

lpStatus See
"Device
Status" on
page 4-1

BiSetStatusBackFunction OK -

BiSetStatusBackWnd OK -

BiCancelStatusBack OK -

5-2 Differences Between TM-J9000/J9100 API and TM-S1000 API Rev.D

BiDirectIO NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiDirectIOEx NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiResetPrinter OK -

BiGetCounter Change ✔ ✔ Specifying a
maintenance counter
that is not present
leads to an error.
(ERR_PARAM)

readno See
"Maintena
nce
Counter"
on
page 4-3

BiResetCounter Change ✔ - Specifying a
maintenance counter
that is not present
leads to an error.
(ERR_PARAM)

writeno See
"Maintena
nce
Counter"
on
page 4-3

BiCancelError OK -

BiGetType Change - ✔ Obtained device
information is different.

typeid
font
exrom
euspecial

See "Type
ID" on
page 4-3

BiGetOfflineCode Change - ✔ Obtained offline
information is different.

offlinecod
e

See
"Offline
Code
(BiGetOffli
neCode)"
on
page 4-6

BiGetOfflineCodeByIndex New - Obtains offline
information by bytes.

BiGetInkStatus NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiSetInkStatusBackFunction NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiSetInkStatusBackWnd NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiCancelInkStatusBack NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiMICRSelectDataHandling OK - When MF_PROCESS
structure is not set, the
setting is enabled.

BiMICRGetStatus Change - ✔ Diifferent MICR
information is
obtained.

pStatus See "MICR
Status" on
page 4-10

BiMICRCleaning OK -

BiSCNSetImageQuality OK -

BiSCNSetImageFormat OK -

BiSCNSetScanArea OK -

BiSCNGetImageQuality OK -

API Compati
bility

Different information

Input Output Description Item Data

Rev.D Differences Between TM-J9000/J9100 API and TM-S1000 API 5-3

TM-S1000 API for EMEA Reference Guide

BiSCNGetImageFormat OK -

BiSCNGetScanArea OK -

BiSCNGetClumpStatus NG -

BiSCNSetCroppingArea OK -

BiSCNGetCroppingArea OK -

BiSCNDeleteCroppingArea OK -

BiSCNSelectScanUnit Change ✔ - Specifying Card leads
to an error.
(ERR_PARAM)

bSelectUnit Only
BPS_BI_SC
N_UNIT_C
HECKPAPE
R is
specified.

BiSCNMICRFunction Up ✔ - MF_PROCESS structure
was added to the
input information.
When the operation is
set with
BiMICRSelectDataHan
dling, reading is
possible even if it is not
set.

MF_PROCE
SS

See
"Setting
List of
MF_PROC
ESS
Structure"
on
page 5-6

BiSCNMICRCancelFunction OK -

BiSCNSelectScanFace OK -

BiGetPrnCapability Change ✔ ✔ Obtained device
information is diffrent.

pmID See
"Device
ID" on
page 4-4

BiCloseMonPrinter OK -

BiGetRealStatus Change - ✔ Obtained Devie status
information is different.

lpStatus See
"Device
Status" on
page 4-1

BiSendDataFile NG -

BiDirectSendRead NG -

BiSetStatusBackFunctionEx OK -

BiSetInkStatusBackFunctionEx NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiSCNMICRFunctionContinuously Up ✔ - MF_PROCESS structure
was added to the
input information.
When the operation is
set with
BiMICRSelectDataHan
dling, reading is
possible even if it is not
set.

MF_PROCE
SS

See
"Setting
List of
MF_PROC
ESS
Structure"
on
page 5-6

API Compati
bility

Different information

Input Output Description Item Data

5-4 Differences Between TM-J9000/J9100 API and TM-S1000 API Rev.D

BiSCNMICRFunctionPostPrint Up ✔ - MF_PROCESS structure
was added to the
input information.
When the operation is
set with
BiMICRSelectDataHan
dling, reading is
possible even if it is not
set.

MF_PROCE
SS

See
"Setting
List of
MF_PROC
ESS
Structure"
on
page 5-6

BiSCNMICRSetStatusBackFunction OK -

BiSCNMICRSetStatusBackWnd OK -

BiSCNMICRCancelStatusBack OK -

BiSetNumberOfDocuments New -

BiGetMicrText OK -

BiMICRClearSpaces New -

BiSetOcrABAreaOrigin New -

BiGetOcrABText New -

BiGetScanImage OK -

BiGetBarcodeData New -

BiDecodeBarcode New -

BiDecodeBarcodeMemory New -

BiGetTransactionNumber OK -

BiSetTransactionNumber OK -

BiGetPrintStation OK -

BiSetPrintStation Change ✔ - Specifying Receipt or
Validation leads to an
error.
(ERR_PARAM)

wStation

BiPrintText OK -

BiPrintBarCode NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiPrintImage OK -

BiPrintMemoryImage New -

BiGetPrintAlignment NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiSetPrintAlignment NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiGetPrintSize OK -

BiSetPrintSize OK -

BiGetPrintPosition OK -

BiSetPrintPosition OK -

BiSetEndorseDirection New -

BiUpdateEndorseText OK -

API Compati
bility

Different information

Input Output Description Item Data

Rev.D Differences Between TM-J9000/J9100 API and TM-S1000 API 5-5

TM-S1000 API for EMEA Reference Guide

BiInsertValidation NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiRemoveValidation NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiBufferedPrint OK -

BiGetPrintControl NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiSetPrintControl NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiSetTransactionNumberWithIncre
mental

OK -

BiSelectJamDetect NG - Leads to an error.
(ERR_NOT_SUPPORT)

BiSetBehaviorToScnResult New -

BiSetPaperThickness New -

BiRingBuzzer New -

BiSetWaterfallMode New -

BiGetIQAResult New -

BiGetVersion New - API to obtain version of
the driver and module
in use.

API Compati
bility

Different information

Input Output Description Item Data

5-6 Differences Between TM-J9000/J9100 API and TM-S1000 API Rev.D

API Compatibility of the Scanner Extended Functions

Setting List of MF_PROCESS Structure

API of scanner extended functions Compatibility

BiESCNEnable OK

BiESCNGetAutoSize OK

BiESCNSetAutoSize OK

BiESCNGetCutSize OK

BiESCNSetCutSize OK

BiESCNGetRotate OK

BiESCNSetRotate OK

BiESCNGetDocumentSize OK

BiESCNSetDocumentSize OK

BiESCNGetDeSkew New

BiESCNSetDeSkew New

BiESCNDefineCropArea OK

BiESCNGetMaxCropAreas OK

BiESCNStoreImage OK

BiESCNRetrieveImage OK

BiESCNClearImage OK

BiESCNGetRemainingImages OK

Member Data type Description

iSize int Specifies the structure size.

iVersion int Specifies the structure version.

bActivationMode BYTE Specifies the process mode (error judging method).

bPaperType BYTE Specifies the type of a check to be scanned.

dwStartWaitTime DWORD Specifies the waiting time for insertion.

bSuccessStamp BYTE Specifies the franking process when MICR reading is successful.

bPaperMisInsertionErrorSelect BYTE Sets the error judgement when the insertion orientaion is wrong.

bPaperMisInsertionErrorEject BYTE Sets the ejection method when an insertion orientation error
occurs.

bPaperMisInsertionStamp BYTE Sets the franking process when an insertion orientation error
occurs.

bPaperMisInsertionCancel BYTE Sets cancellation when an insertion orientation error occurs.

bDoubleFeedErrorSelect BYTE Sets the error judgement when a double-feeding error occurs.

bDoubleFeedErrorEject BYTE Sets the ejection method when a double-feeding error occurs.

bDoubleFeedStamp BYTE Sets the franking process when a double-feeding error occurs.

bDoubleFeedCancel BYTE Sets the cancellation when a double-feeding error occurs.

bBaddataErrorSelect BYTE Sets the error judgement when an unrecognized MICR character is
detected.

Rev.D Differences Between TM-J9000/J9100 API and TM-S1000 API 5-7

TM-S1000 API for EMEA Reference Guide

Setting List of MF_IQA Structure

bBaddataCount BYTE Sets the allowed number of characters when an unrecognized
MICR character error ocurs.

bBaddataErrorEject BYTE Sets the ejection method when an unrecognized MICR character
error occurs or when the number of unrecognized MICR
characters exceeds the allowance.

bBaddataStamp BYTE Sets the franking process when an unrecognized MICR character
error occurs or when the number of unrecognized MICR
characters exceeds the allowance.

bBaddataCancel BYTE Sets the cancellation when an unrecognized MICR character error
occurs or when the number of unrecognized MICR characters
exceeds the allowance.

bNodataErrorSelect BYTE Sets the error judgement when the MICR magnetic waveform is
not detected.

bNodataErrorEject BYTE Sets the ejection method for a MICR magnetic waveform
undetection error.

bNodataStamp BYTE Sets the franking process when a MICR magnetic waveform
undetection error occurs.

bNodataCancel BYTE Sets the cancellation when a MICR magnetic waveform
undetection error occurs.

bNearFullSelect BYTE Sets the near-full pocket detection.

bResultPartialData BYTE Sets the data handling when an error occurs during scanning.

Member Data type Description

iSize int Specifies the structure size.

iVersion int Specifies the structure version.

bErrorSelect BYTE Enables/Disables the IQA function.

bErrorEject BYTE Specifies the ejection pocket of documents.

bStamp BYTE Specifies the franking process.

bCancel BYTE Specifies whether to continue or cancel the reading process of a
document.

bImageFormat BYTE Specifies an image format.

bColorDepth BYTE Specifies the gradation.

bThreshold CHAR Specifies the density threshold.

bColor BYTE Specifies color.

bExOption BYTE Specifies the variety of density adjustment.

sResolution short Specifies the resolution.

bUndersize BYTE Enables/Disables UndersizeImage validation.

bOversize BYTE Enables/Disables OversizeImage validation.

bMincompressed BYTE Enables/Disables MinCompressedImageSize validation.

bMaxcompressed BYTE Enables/Disables MaxCompressedImageSize validation.

Member Data type Description

5-8 Differences Between TM-J9000/J9100 API and TM-S1000 API Rev.D

bFront_rear BYTE Enables/Disables FrontRearImageMismatch validation.

bToolight BYTE Enables/Disables ImageTooLight validation.

bToodark BYTE Enables/Disables ImageTooDark validation.

bStreaks BYTE Enables/Disables HorizontalStreaksPresent validation.

bNoise BYTE Enables/Disables ExcessiveSpotNoise validation.

bFocus BYTE Enables/Disables ImageOutOfFocus validation.

bCorners BYTE Enables/Disables ImageOutOfFocus validation.

bEdges BYTE Enables/Disables FoldedTornDocEdges validation.

bFraming BYTE Enables/Disables DocFramingError validation.

bSkew BYTE Enables/Disables ExcessiveDocSkew validation.

bCarbon BYTE Enables/Disables CarbonStripDetection validation.

bPiggyback BYTE Enables/Disables Piggyback validation.

Member Data type Description

Rev.D Differences Between TM-J9000/J9100 API and TM-S1000 API 5-9

TM-S1000 API for EMEA Reference Guide

Setting List of MF_BARCODE Structure

Member Data type Description

iSize int Specifies the structure size.

iVersion int Specifies the structure version.

iRet int The execution result on barcode is set.

bErrorSelect BYTE Specifies whether to detect the barcode decode error or not.

bErrorEject BYTE Specifies where to eject when the barcode decode error is
detected.

bStamp BYTE Specifies whether to do the flanking process to the sheet when the
barcode decode error is detected.

bCancel BYTE Specifies whether to continue read processing when the barcode
decode error is detected.

dwTargetColor DWORD Specifies the barcode color.

sResolution short Specifies the image resolution of image data.

dwInfoMode DWORD Fixed to 0

stInfo[5] BARCODE_INFO The structure where the decode setting and the status of decode
result are made.

stInfo[].iRet int The decode execution result is set.

stInfo[].bStatus; BYTE The decoding result status is set.

stInfo[].bDetail; BYTE The detailed status of decoding result is set.

stInfo[].dwSymbolMask; DWORD Specifies the type of barcode symbol to decode

stInfo[].bDirection; BYTE Specifies the direction to decode.

stInfo[].bOrigin; BYTE Specifies the origin point to decode.

stInfo[].wStartX; WORD Specifies the starting point to decode in the x-coordinate.

stInfo[].wStartY; WORD Specifies the starting point to decode in the y-coordinate.

stInfo[].wEndX WORD Specifies the ending point to decode in the x-coordinate.

stInfo[].wEndY WORD Specifies the ending point to decode in the y-coordinate.

bDataCount BYTE The number of barcode decoding results is set.

lpData LPVOID The barcode decoding result (BARCODE_DATA structure) is set.

5-10 Differences Between TM-J9000/J9100 API and TM-S1000 API Rev.D

Rev.D Log Collection Function 6-1

TM-S1000 API for EMEA Reference Guide

Chapter 6
Log Collection Function

This chapter describes how to create a log file and how to analyze it.

A log file records tracing between an application and an API. (File name:
TMS1000DriverTrace.log) The log file records TM-S1000 APIs executed, parameters, obtained
MICR/OCR data and so on. Log files are helpful for efficient application development and error
analysis.

Note:
Image data and its file name are not recorded.
The recordable file size is up to 10MB. If a file size exceeds 10MB, the file name
(TM-S1000DriverTrace_Bak.log) will be changed and a new log file will be created.

Log files are stored in the following folder depending on the OS.

• Windows 2000 / Windows XP
C:\Documents and Settings\All Users\EPSON\BANK\TM-S1000\Trace

• Windows Vista or newer Windows versions.
C:\ProgramData\EPSON\BANK\TM-S1000\Trace

The following description is for Windows XP Professional.

EPSON TM-S1000

USB Host Controller Driver

TM-S1000 Driver

TMUSB Device Driver

USB Bus Driver

USB Controller

Windows

Aplication

Log tracing Log file

Provided by EPSON

6-2 Log Collection Function Rev.D

Creating A Log File

Follow the steps below to create a log file or to quit creating a log file.

How to Create A Log File

Use setup.exe of the TM-S1000 Driver to create a log file. Follow the steps below for setting.

1. When the TM-S1000 Driver is installed, start up setup.exe of EPSON TM-S1000 Driver.

2. Select [Modify], and then click [Next].

3. The “Select Features” screen appears. Check the checkbox for [RunTime] and [Log collection
function], and then click [Next].

Rev.D Log Collection Function 6-3

TM-S1000 API for EMEA Reference Guide

4. The “Maintenance Complete” screen appears. Click [Finish] to exit.

Hereafter, a log file will be created when you use the TM-S1000 API.

How to Quit Creating A Log File

Use setup.exe of the TM-S1000 Driver also to quit creating a log file.

1. When the TM-S1000 Driver is installed, start up setup.exe of EPSON TM-S1000 Driver.

2. Select [Modify], and then click [Next].

6-4 Log Collection Function Rev.D

3. The “Select Features” screen appears. Uncheck the check box for [Log collection function]
under [RunTime].

4. The “Maintenance Complete” screen appears. Click [Finish] to exit.

Hereafter, a log file will not be created even when you use the TM-S1000 API.

Rev.D Log Collection Function 6-5

TM-S1000 API for EMEA Reference Guide

How to Analyze A Log File

One record of a log file shows the following information:

Common output

Details of data format

Contents Output date and time
"YYYYMMDDhhmmss.sss"

, Data format
"FUI" : Calling API
"CBI" : Calling CALLBACK function
"FUO" : Return of API
"CBO" : Return of CALLBACK function
"MFB" : Driver accesses the OUT

attribute member of
MF_BASE01 structure the
application has.

"MFM" : Driver accesses the OUT
attribute member of
MF_MICR structure.

"MFS" : Driver accesses the OUT
attribute member of MF_SCAN
structure.

"MFP" : Driver accesses the OUT
attribute member of
MF_PRINT01 structure.

"ASB" : ASB notification from the
device

"SRC" : Event that is notified to
CALLBACK during reading
operation.

, Thread ID , Port
name

,

Number
of
columns

18 1 3 1 8 1 3 1

Data format Output

"FUI" “API name, parameter value 1,…, parameter value n”
If there is more than one parameter, they continue in the specified order using “,” as a
separator.
If a parameter is a structure, the log file is broken into members (1 parameter = 1 member).
The start of a structure and array is shown as “{“ and the end of them is shown as “}.”
Parameter values are output in a decimal or hexadecimal character string.

"CBI" “Handle, parameter value 1,…, parameter value n”
If there is more than one parameter, they continue in the specified order using “,” as a
separator.
Parameter values are output in a decimal or hexadecimal character string.

"FUO" “API name, parameter value 1,…, parameter value n, <return value>”
If there is more than one parameter, they continue in the specified order using “,” as a
separator.
If a parameter is a structure, the log file is broken into members (1 parameter = 1 member).
The start of a structure and array is shown as “{“ and the end of them is shown as “}.”
Parameter values are output in a decimal or hexadecimal character string.
The value shown in the last <> shows a return value. The return value is shown in a
hexadecimal character string.

20070629155557.875,FUO,00000C9C,USB2:,BiOpenMonPrinter,00000002,TM-S1000U,<00000001>

[Date and time]

[Data format]

[Thread ID]

[Port name]

[Output for each data format]

6-6 Log Collection Function Rev.D

 "CBO" “Handle, parameter value 1,…, parameter value n, <return value>”
If there is more than one parameter, they continue in the specified order using “,” as a
separator.
If a parameter is a structure, the log file is broken into members (1 parameter = 1 member).
Parameter values are output in a decimal or hexadecimal character string.
The value shown in the last <> shows a return value. The return value is shown in a
hexadecimal character string.

“MFB” “Handle, contents of MF_BASE01 structure…”
If a parameter is a structure, the log file is broken into members (1 parameter = 1 member).
The start of a structure and array is shown as “{“ and the end of them is shown as “}.”
Parameter values are output in a decimal or hexadecimal character string.

“MFM” “Handle, contents of MF_MICR structure…”
If a parameter is a structure, the log file is broken into members (1 parameter = 1 member).
The start of a structure and array is shown as “{“ and the end of them is shown as “}.”
Parameter values are output in a decimal or hexadecimal character string.

“MFS” “Handle, contents of MF_SCAN structure…”
If a parameter is a structure, the log file is broken into members (1 parameter = 1 member).
The start of a structure and array is shown as “{“ and the end of them is shown as “}.”
Parameter values are output in a decimal or hexadecimal character string.

“MFP” “Handle, contents of MF_PRINT01 structure…”
If a parameter is a structure, the log file is broken into members (1 parameter = 1 member).
The start of a structure and array is shown as “{“ and the end of them is shown as “}.”
Parameter values are output in a decimal or hexadecimal character string.

"ASB" “Handle, ASB notified from the device“
Values are output in a hexadecimal character string.

"SRC" Outputs differ depending on the events.
Values are output in a hexadecimal character string.

Reading start
Event type: 1
“Handle, event type, transaction number, reading result“

Reading result
Event type: 2
“Handle, event type, transaction number, reading result”

Data reception
Event type: 3
“Handle, transaction number, reading result, analysis result of magnetic waveform data,
analysis result of OCR, reception result of image data“

Ejection end
Event type: 4
“Handle, event type, transaction number, reading result“

Reading end
Event type: 5
“Handle, event type received, reading result”

Data format Output

Rev.D Log Collection Function 6-7

TM-S1000 API for EMEA Reference Guide

Examples of log file output

20070703164335.421,FUI,00000854, :,BiESCNEnable,00000001
20070703164335.421,FUO,00000854, :,BiESCNEnable,00000001,<00000000>
20070703164335.421,FUI,00000854, :,BiOpenMonPrinter,00000002,TM-S1000U,1.00
20070703164336.156,ASB,000000AC,USB2:,00000001,4D6F0014
20070703164336.156,FUO,00000854,USB2:,BiOpenMonPrinter,00000002,TM-S1000U,<00000001>
20070703164336.156,FUI,00000854,USB2:,BiSCNMICRSetStatusBackFunction,00000001,004DD3FF
20070703164336.156,FUO,00000854,USB2:,BiSCNMICRSetStatusBackFunction,00000001,004DD3FF
,<00000000>
20070703164336.203,FUI,00000854,USB2:,BiSCNMICRFunctionPostPrint,00000001,{00000000,0000
0000,00000000,00000000,{00000000,00000000},00000000,00000000,{00000000,00000000,00000000}
,{00000000,00000000,00000000},00000000,00000000},00000030
20070703164336.203,FUO,00000854,USB2:,BiSCNMICRFunctionPostPrint,00000001,{00000127,0000
0101,CCCCCCCC,00000003,00000000,{00000000,00000000},00000000,00000001,{00000000,000000
00,00000000},{00000000,00000000,00000000},00000000,USB2,00000000},00000010,<00000000>
20070703164336.203,FUI,00000854,USB2:,BiSCNMICRFunctionPostPrint,00000001,{00000000,0000
0000,00000000,00000000,00000000,NULL},00000032

6-8 Log Collection Function Rev.D

	Cover
	Contents
	Chapter 1 TM-S1000 Driver Overview
	Introduction
	Contents

	Functions of theTM-S1000
	Model
	Structure of TM-S1000

	Features of the TM-S1000 API
	Operating Environment
	OS
	Computer
	Interface
	Development Language

	Files Provided by the TM-S1000 API
	Roles of Driver

	Chapter 2 Install and Uninstall
	Install and Uninstall
	Install
	Uninstall

	Silent Install
	Generation of installation log file
	Installer settings

	Chapter 3 Programming guide
	Application Processing Steps
	MF_PROCESS structure
	MF_IQA structure
	MF_BARCODE structure
	Error detections and operation priorities
	API used for each processing mode and its setting

	Sample Programs
	Step 1 Opening/Closing the Device
	Step 2 Displaying the Read Data
	Step 3 Continuous Reading/Electric Endorsement
	Step 4 Setting the Process When a Reading Error Occurs
	Step 5 Setting MICR Font/Image Quality
	Step 6 Reading OCR-A/B Font and Buzzer Setting
	Step 7 Confirming the Device status and error handling
	Step 8 Decoding a barcode, confirming the IQA and Waterfall process

	How to Use the Scanner Advanced Functions
	When not using the scanner advanced functions
	Using the scanner advanced functions
	Editing scanned-in images
	Cropping

	Chapter 4 Reference
	Device information
	Device Status
	Maintenance Counter
	Type ID
	Device ID
	Offline Code (BiGetOfflineCode)
	Offline Code (BiGetOfflineCodeByIndex)
	MICR Status

	TM-S1000 API Error Handling
	BiOpenMonPrinter
	BiSetMonInterval
	BiGetStatus
	BiSetStatusBackFunction
	BiSetStatusBackFunctionEx
	BiSetStatusBackWnd
	BiCancelStatusBack
	BiResetPrinter
	BiGetCounter
	BiResetCounter
	BiCancelError
	BiGetType
	BiGetOfflineCode
	BiGetOfflineCodeByIndex
	BiMICRSelectDataHandling
	BiMICRGetStatus
	BiMICRCleaning
	BiSCNSetImageQuality
	BiSCNSetImageFormat
	BiSCNSetScanArea
	BiSCNGetImageQuality
	BiSCNGetImageFormat
	BiSCNGetScanArea
	BiSCNSetCroppingArea
	BiSCNGetCroppingArea
	BiSCNDeleteCroppingArea
	BiSCNSelectScanUnit
	BiSCNMICRFunction
	BiSCNMICRCancelFunction
	BiSCNSelectScanFace
	BiGetPrnCapability
	BiCloseMonPrinter
	BiGetRealStatus
	BiSCNMICRFunctionContinuously
	BiSCNMICRFunctionPostPrint
	BiSCNMICRSetStatusBackFunction
	BiSCNMICRSetStatusBackWnd
	BiSCNMICRCancelStatusBack
	BiSetNumberOfDocuments
	BiGetMicrText
	BiMICRClearSpaces
	BiSetOcrABAreaOrigin
	BiGetOcrABText
	BiGetScanImage
	BiGetBarcodeData
	BiDecodeBarcode
	BiDecodeBarcodeMemory
	BiGetTransactionNumber
	BiSetTransactionNumber
	BiGetPrintStation
	BiSetPrintStation
	BiPrintText
	BiPrintImage
	BiPrintMemoryImage
	BiGetPrintSize
	BiSetPrintSize
	BiGetPrintPosition
	BiSetPrintPosition
	BiSetEndorseDirection
	BiUpdateEndorseText
	BiBufferedPrint
	BiSetTransactionNumberWithIncremental
	BiSetBehaviorToScnResult
	BiSetPaperThickness
	BiRingBuzzer
	BiSetWaterfallMode
	BiGetIQAResult
	BiGetVersion
	BiESCNEnable
	BiESCNGetAutoSize
	BiESCNSetAutoSize
	BiESCNGetCutSize
	BiESCNSetCutSize
	BiESCNGetRotate
	BiESCNSetRotate
	BiESCNGetDeSkew
	BiESCNSetDeSkew
	BiESCNGetDocumentSize
	BiESCNSetDocumentSize
	BiESCNDefineCropArea
	BiESCNGetMaxCropAreas
	BiESCNStoreImage
	BiESCNRetrieveImage
	BiESCNClearImage
	BiESCNGetRemainingImages
	Structures
	MF_BASE01
	MF_MICR
	MF_SCAN
	MF_PRINT01
	MF_PROCESS
	MF_OCR_AB
	MF_OCR_RELIABILITY
	MF_OCR_RELIABLE_INFO
	MF_IQA
	MF_IQA_RESULT
	MF_BARCODE

	Chapter 5 Differences Between TM-J9000/J9100 API and TM-S1000 API
	API Lists of the TM-J9000/J9100 and the TM-S1000
	Compatibility Between the TM-J9000/J9100 and the TM-S1000
	API Compatibility of the Scanner Extended Functions
	Setting List of MF_PROCESS Structure
	Setting List of MF_IQA Structure
	Setting List of MF_BARCODE Structure

	Chapter 6 Log Collection Function
	Creating A Log File
	How to Create A Log File
	How to Quit Creating A Log File

	How to Analyze A Log File

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

